File size: 7,541 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Base class for model export."""

import abc
from typing import Dict, List, Mapping, Optional, Text

import tensorflow as tf, tf_keras
from official.core import config_definitions as cfg
from official.core import export_base


class ExportModule(export_base.ExportModule, metaclass=abc.ABCMeta):
  """Base Export Module."""

  def __init__(self,
               params: cfg.ExperimentConfig,
               *,
               batch_size: int,
               input_image_size: List[int],
               input_type: str = 'image_tensor',
               num_channels: int = 3,
               model: Optional[tf_keras.Model] = None,
               input_name: Optional[str] = None):
    """Initializes a module for export.

    Args:
      params: Experiment params.
      batch_size: The batch size of the model input. Can be `int` or None.
      input_image_size: List or Tuple of size of the input image. For 2D image,
        it is [height, width].
      input_type: The input signature type.
      num_channels: The number of the image channels.
      model: A tf_keras.Model instance to be exported.
      input_name: A customized input tensor name.
    """
    self.params = params
    self._batch_size = batch_size
    self._input_image_size = input_image_size
    self._num_channels = num_channels
    self._input_type = input_type
    self._input_name = input_name
    if model is None:
      model = self._build_model()  # pylint: disable=assignment-from-none
    super().__init__(params=params, model=model)

  def _decode_image(self, encoded_image_bytes: str) -> tf.Tensor:
    """Decodes an image bytes to an image tensor.

    Use `tf.image.decode_image` to decode an image if input is expected to be 2D
    image; otherwise use `tf.io.decode_raw` to convert the raw bytes to tensor
    and reshape it to desire shape.

    Args:
      encoded_image_bytes: An encoded image string to be decoded.

    Returns:
      A decoded image tensor.
    """
    if len(self._input_image_size) == 2:
      # Decode an image if 2D input is expected.
      image_tensor = tf.image.decode_image(
          encoded_image_bytes, channels=self._num_channels)
      image_tensor.set_shape((None, None, self._num_channels))
    else:
      # Convert raw bytes into a tensor and reshape it, if not 2D input.
      image_tensor = tf.io.decode_raw(encoded_image_bytes, out_type=tf.uint8)
      image_tensor = tf.reshape(image_tensor,
                                self._input_image_size + [self._num_channels])
    return image_tensor

  def _decode_tf_example(
      self, tf_example_string_tensor: tf.train.Example) -> tf.Tensor:
    """Decodes a TF Example to an image tensor.

    Args:
      tf_example_string_tensor: A tf.train.Example of encoded image and other
        information.

    Returns:
      A decoded image tensor.
    """
    keys_to_features = {'image/encoded': tf.io.FixedLenFeature((), tf.string)}
    parsed_tensors = tf.io.parse_single_example(
        serialized=tf_example_string_tensor, features=keys_to_features)
    image_tensor = self._decode_image(parsed_tensors['image/encoded'])
    image_tensor.set_shape(
        [None] * len(self._input_image_size) + [self._num_channels]
    )
    return image_tensor

  def _build_model(self, **kwargs):
    """Returns a model built from the params."""
    return None

  @tf.function
  def inference_from_image_tensors(
      self, inputs: tf.Tensor) -> Mapping[str, tf.Tensor]:
    return self.serve(inputs)

  @tf.function
  def inference_for_tflite(self, inputs: tf.Tensor) -> Mapping[str, tf.Tensor]:
    return self.serve(inputs)

  @tf.function
  def inference_from_image_bytes(self, inputs: tf.Tensor):
    with tf.device('cpu:0'):
      images = tf.nest.map_structure(
          tf.identity,
          tf.map_fn(
              self._decode_image,
              elems=inputs,
              fn_output_signature=tf.TensorSpec(
                  shape=[None] * len(self._input_image_size) +
                  [self._num_channels],
                  dtype=tf.uint8),
              parallel_iterations=32))
      images = tf.stack(images)
    return self.serve(images)

  @tf.function
  def inference_from_tf_example(self,
                                inputs: tf.Tensor) -> Mapping[str, tf.Tensor]:
    with tf.device('cpu:0'):
      images = tf.nest.map_structure(
          tf.identity,
          tf.map_fn(
              self._decode_tf_example,
              elems=inputs,
              # Height/width of the shape of input images is unspecified (None)
              # at the time of decoding the example, but the shape will
              # be adjusted to conform to the input layer of the model,
              # by _run_inference_on_image_tensors() below.
              fn_output_signature=tf.TensorSpec(
                  shape=[None] * len(self._input_image_size) +
                  [self._num_channels],
                  dtype=tf.uint8),
              dtype=tf.uint8,
              parallel_iterations=32))
      images = tf.stack(images)
    return self.serve(images)

  def get_inference_signatures(self, function_keys: Dict[Text, Text]):
    """Gets defined function signatures.

    Args:
      function_keys: A dictionary with keys as the function to create signature
        for and values as the signature keys when returns.

    Returns:
      A dictionary with key as signature key and value as concrete functions
        that can be used for tf.saved_model.save.
    """
    signatures = {}
    for key, def_name in function_keys.items():
      if key == 'image_tensor':
        input_signature = tf.TensorSpec(
            shape=[self._batch_size] + [None] * len(self._input_image_size) +
            [self._num_channels],
            dtype=tf.uint8,
            name=self._input_name)
        signatures[
            def_name] = self.inference_from_image_tensors.get_concrete_function(
                input_signature)
      elif key == 'image_bytes':
        input_signature = tf.TensorSpec(
            shape=[self._batch_size], dtype=tf.string, name=self._input_name)
        signatures[
            def_name] = self.inference_from_image_bytes.get_concrete_function(
                input_signature)
      elif key == 'serve_examples' or key == 'tf_example':
        input_signature = tf.TensorSpec(
            shape=[self._batch_size], dtype=tf.string, name=self._input_name)
        signatures[
            def_name] = self.inference_from_tf_example.get_concrete_function(
                input_signature)
      elif key == 'tflite':
        input_signature = tf.TensorSpec(
            shape=[self._batch_size] + self._input_image_size +
            [self._num_channels],
            dtype=tf.float32,
            name=self._input_name)
        signatures[def_name] = self.inference_for_tflite.get_concrete_function(
            input_signature)
      else:
        raise ValueError('Unrecognized `input_type`')
    return signatures