Spaces:
Runtime error
Runtime error
File size: 10,101 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Gaussian process functions."""
import os
import shutil
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import gaussian_process
def exact_gaussian_kernel(x1, x2):
"""Computes exact Gaussian kernel value(s) for tensors x1 and x2."""
x1_squared = tf.reduce_sum(tf.square(x1), list(range(1, len(x1.shape))))
x2_squared = tf.reduce_sum(tf.square(x2), list(range(1, len(x2.shape))))
square = (x1_squared[:, tf.newaxis] + x2_squared[tf.newaxis, :] -
2 * tf.matmul(x1, x2, transpose_b=True))
return tf.math.exp(-square / 2.)
def _generate_normal_data(num_sample, num_dim, loc):
"""Generates random data sampled from i.i.d. normal distribution."""
return np.random.normal(
size=(num_sample, num_dim), loc=loc, scale=1. / np.sqrt(num_dim))
def _generate_rbf_data(x_data, orthogonal=True):
"""Generates high-dim data that is the eigen components of a RBF kernel."""
k_rbf = exact_gaussian_kernel(x_data, x_data)
x_orth, x_diag, _ = np.linalg.svd(k_rbf)
if orthogonal:
return x_orth
return np.diag(np.sqrt(x_diag)).dot(x_orth.T)
def _make_minibatch_iterator(data_numpy, batch_size, num_epoch):
"""Makes a tf.data.Dataset for given batch size and num epoches."""
dataset = tf.data.Dataset.from_tensor_slices(data_numpy)
dataset = dataset.repeat(num_epoch).batch(batch_size)
return iter(dataset)
def _compute_posterior_kernel(x_tr, x_ts, kernel_func, ridge_penalty):
"""Computes the posterior covariance matrix of a Gaussian process."""
num_sample = x_tr.shape[0]
k_tt_inv = tf.linalg.inv(
kernel_func(x_tr, x_tr) + ridge_penalty * np.eye(num_sample))
k_ts = kernel_func(x_tr, x_ts)
k_ss = kernel_func(x_ts, x_ts)
return k_ss - tf.matmul(k_ts, tf.matmul(k_tt_inv, k_ts), transpose_a=True)
class GaussianProcessTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(GaussianProcessTest, self).setUp()
self.num_data_dim = 10
self.num_inducing = 1024
self.num_train_sample = 1024
self.num_test_sample = 256
self.prec_tolerance = {'atol': 1e-3, 'rtol': 5e-2}
self.cov_tolerance = {'atol': 5e-2, 'rtol': 2.}
self.rbf_kern_func = exact_gaussian_kernel
self.x_tr = _generate_normal_data(
self.num_train_sample, self.num_data_dim, loc=0.)
self.x_ts = _generate_normal_data(
self.num_test_sample, self.num_data_dim, loc=1.)
def test_layer_build(self):
"""Tests if layer.built=True after building."""
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1)
rfgp_model.build(input_shape=self.x_tr.shape)
self.assertTrue(rfgp_model.built)
@parameterized.named_parameters(('rbf_data', False),
('orthogonal_data', True))
def test_laplace_covariance_minibatch(self, generate_orthogonal_data):
"""Tests if model correctly learns population-lvel precision matrix."""
batch_size = 50
epochs = 1000
x_data = _generate_rbf_data(self.x_ts, generate_orthogonal_data)
data_iterator = _make_minibatch_iterator(x_data, batch_size, epochs)
# Estimates precision matrix using minibatch.
cov_estimator = gaussian_process.LaplaceRandomFeatureCovariance(
momentum=0.999, ridge_penalty=0)
for minibatch_data in data_iterator:
_ = cov_estimator(minibatch_data, training=True)
# Evaluation
prec_mat_expected = x_data.T.dot(x_data)
prec_mat_computed = (
cov_estimator.precision_matrix.numpy() * self.num_test_sample)
np.testing.assert_allclose(prec_mat_computed, prec_mat_expected,
**self.prec_tolerance)
def test_random_feature_prior_approximation(self):
"""Tests random feature GP's ability in approximating exact GP prior."""
num_inducing = 10240
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(
units=1,
num_inducing=num_inducing,
normalize_input=False,
gp_kernel_type='gaussian',
return_random_features=True)
# Extract random features.
_, _, gp_feature = rfgp_model(self.x_tr, training=True)
gp_feature_np = gp_feature.numpy()
prior_kernel_computed = gp_feature_np.dot(gp_feature_np.T)
prior_kernel_expected = self.rbf_kern_func(self.x_tr, self.x_tr)
np.testing.assert_allclose(prior_kernel_computed, prior_kernel_expected,
**self.cov_tolerance)
def test_random_feature_posterior_approximation(self):
"""Tests random feature GP's ability in approximating exact GP posterior."""
# Set momentum = 0.5 so posterior precision matrix is 0.5 * (I + K).
gp_cov_momentum = 0.5
gp_cov_ridge_penalty = 1.
num_inducing = 1024
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(
units=1,
num_inducing=num_inducing,
normalize_input=False,
gp_kernel_type='gaussian',
gp_cov_momentum=gp_cov_momentum,
gp_cov_ridge_penalty=gp_cov_ridge_penalty)
# Computes posterior covariance on test data.
_, _ = rfgp_model(self.x_tr, training=True)
_, gp_cov_ts = rfgp_model(self.x_ts, training=False)
# Scale up covariance estimate since prec matrix is down-scaled by momentum.
post_kernel_computed = gp_cov_ts * gp_cov_momentum
post_kernel_expected = _compute_posterior_kernel(self.x_tr, self.x_ts,
self.rbf_kern_func,
gp_cov_ridge_penalty)
np.testing.assert_allclose(post_kernel_computed, post_kernel_expected,
**self.cov_tolerance)
def test_random_feature_linear_kernel(self):
"""Tests if linear kernel indeed leads to an identity mapping."""
# Specify linear kernel
gp_kernel_type = 'linear'
normalize_input = False
scale_random_features = False
use_custom_random_features = True
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(
units=1,
normalize_input=normalize_input,
gp_kernel_type=gp_kernel_type,
scale_random_features=scale_random_features,
use_custom_random_features=use_custom_random_features,
return_random_features=True)
_, _, gp_feature = rfgp_model(self.x_tr, training=True)
# Check if linear kernel leads to identity mapping.
np.testing.assert_allclose(gp_feature, self.x_tr, **self.prec_tolerance)
def test_no_matrix_update_during_test(self):
"""Tests if the precision matrix is not updated during testing."""
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1)
# Training.
_, gp_covmat_null = rfgp_model(self.x_tr, training=True)
precision_mat_before_test = rfgp_model._gp_cov_layer.precision_matrix
# Testing.
_ = rfgp_model(self.x_ts, training=False)
precision_mat_after_test = rfgp_model._gp_cov_layer.precision_matrix
self.assertAllClose(
gp_covmat_null, tf.eye(self.num_train_sample), atol=1e-4)
self.assertAllClose(
precision_mat_before_test, precision_mat_after_test, atol=1e-4)
def test_state_saving_and_loading(self):
"""Tests if the loaded model returns same results."""
input_data = np.random.random((1, 2))
rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1)
inputs = tf_keras.Input((2,), batch_size=1)
outputs = rfgp_model(inputs)
model = tf_keras.Model(inputs, outputs)
gp_output, gp_covmat = model.predict(input_data)
# Save and then load the model.
temp_dir = self.get_temp_dir()
self.addCleanup(shutil.rmtree, temp_dir)
saved_model_dir = os.path.join(temp_dir, 'rfgp_model')
model.save(saved_model_dir)
new_model = tf_keras.models.load_model(saved_model_dir)
gp_output_new, gp_covmat_new = new_model.predict(input_data)
self.assertAllClose(gp_output, gp_output_new, atol=1e-4)
self.assertAllClose(gp_covmat, gp_covmat_new, atol=1e-4)
class MeanFieldLogitsTest(tf.test.TestCase):
def testMeanFieldLogitsLikelihood(self):
"""Tests if scaling is correct under different likelihood."""
batch_size = 10
num_classes = 12
variance = 1.5
mean_field_factor = 2.
rng = np.random.RandomState(0)
tf.random.set_seed(1)
logits = rng.randn(batch_size, num_classes)
covmat = tf.linalg.diag([variance] * batch_size)
logits_logistic = gaussian_process.mean_field_logits(
logits, covmat, mean_field_factor=mean_field_factor)
self.assertAllClose(logits_logistic, logits / 2., atol=1e-4)
def testMeanFieldLogitsTemperatureScaling(self):
"""Tests using mean_field_logits as temperature scaling method."""
batch_size = 10
num_classes = 12
rng = np.random.RandomState(0)
tf.random.set_seed(1)
logits = rng.randn(batch_size, num_classes)
# Test if there's no change to logits when mean_field_factor < 0.
logits_no_change = gaussian_process.mean_field_logits(
logits, covariance_matrix=None, mean_field_factor=-1)
# Test if mean_field_logits functions as a temperature scaling method when
# mean_field_factor > 0, with temperature = sqrt(1. + mean_field_factor).
logits_scale_by_two = gaussian_process.mean_field_logits(
logits, covariance_matrix=None, mean_field_factor=3.)
self.assertAllClose(logits_no_change, logits, atol=1e-4)
self.assertAllClose(logits_scale_by_two, logits / 2., atol=1e-4)
if __name__ == '__main__':
tf.test.main()
|