File size: 10,101 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for Gaussian process functions."""
import os
import shutil

from absl.testing import parameterized

import numpy as np
import tensorflow as tf, tf_keras

from official.nlp.modeling.layers import gaussian_process


def exact_gaussian_kernel(x1, x2):
  """Computes exact Gaussian kernel value(s) for tensors x1 and x2."""
  x1_squared = tf.reduce_sum(tf.square(x1), list(range(1, len(x1.shape))))
  x2_squared = tf.reduce_sum(tf.square(x2), list(range(1, len(x2.shape))))
  square = (x1_squared[:, tf.newaxis] + x2_squared[tf.newaxis, :] -
            2 * tf.matmul(x1, x2, transpose_b=True))
  return tf.math.exp(-square / 2.)


def _generate_normal_data(num_sample, num_dim, loc):
  """Generates random data sampled from i.i.d. normal distribution."""
  return np.random.normal(
      size=(num_sample, num_dim), loc=loc, scale=1. / np.sqrt(num_dim))


def _generate_rbf_data(x_data, orthogonal=True):
  """Generates high-dim data that is the eigen components of a RBF kernel."""
  k_rbf = exact_gaussian_kernel(x_data, x_data)
  x_orth, x_diag, _ = np.linalg.svd(k_rbf)
  if orthogonal:
    return x_orth
  return np.diag(np.sqrt(x_diag)).dot(x_orth.T)


def _make_minibatch_iterator(data_numpy, batch_size, num_epoch):
  """Makes a tf.data.Dataset for given batch size and num epoches."""
  dataset = tf.data.Dataset.from_tensor_slices(data_numpy)
  dataset = dataset.repeat(num_epoch).batch(batch_size)
  return iter(dataset)


def _compute_posterior_kernel(x_tr, x_ts, kernel_func, ridge_penalty):
  """Computes the posterior covariance matrix of a Gaussian process."""
  num_sample = x_tr.shape[0]

  k_tt_inv = tf.linalg.inv(
      kernel_func(x_tr, x_tr) + ridge_penalty * np.eye(num_sample))
  k_ts = kernel_func(x_tr, x_ts)
  k_ss = kernel_func(x_ts, x_ts)

  return k_ss - tf.matmul(k_ts, tf.matmul(k_tt_inv, k_ts), transpose_a=True)


class GaussianProcessTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(GaussianProcessTest, self).setUp()
    self.num_data_dim = 10
    self.num_inducing = 1024
    self.num_train_sample = 1024
    self.num_test_sample = 256
    self.prec_tolerance = {'atol': 1e-3, 'rtol': 5e-2}
    self.cov_tolerance = {'atol': 5e-2, 'rtol': 2.}

    self.rbf_kern_func = exact_gaussian_kernel

    self.x_tr = _generate_normal_data(
        self.num_train_sample, self.num_data_dim, loc=0.)
    self.x_ts = _generate_normal_data(
        self.num_test_sample, self.num_data_dim, loc=1.)

  def test_layer_build(self):
    """Tests if layer.built=True after building."""
    rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1)
    rfgp_model.build(input_shape=self.x_tr.shape)

    self.assertTrue(rfgp_model.built)

  @parameterized.named_parameters(('rbf_data', False),
                                  ('orthogonal_data', True))
  def test_laplace_covariance_minibatch(self, generate_orthogonal_data):
    """Tests if model correctly learns population-lvel precision matrix."""
    batch_size = 50
    epochs = 1000
    x_data = _generate_rbf_data(self.x_ts, generate_orthogonal_data)
    data_iterator = _make_minibatch_iterator(x_data, batch_size, epochs)

    # Estimates precision matrix using minibatch.
    cov_estimator = gaussian_process.LaplaceRandomFeatureCovariance(
        momentum=0.999, ridge_penalty=0)

    for minibatch_data in data_iterator:
      _ = cov_estimator(minibatch_data, training=True)

    # Evaluation
    prec_mat_expected = x_data.T.dot(x_data)
    prec_mat_computed = (
        cov_estimator.precision_matrix.numpy() * self.num_test_sample)

    np.testing.assert_allclose(prec_mat_computed, prec_mat_expected,
                               **self.prec_tolerance)

  def test_random_feature_prior_approximation(self):
    """Tests random feature GP's ability in approximating exact GP prior."""
    num_inducing = 10240
    rfgp_model = gaussian_process.RandomFeatureGaussianProcess(
        units=1,
        num_inducing=num_inducing,
        normalize_input=False,
        gp_kernel_type='gaussian',
        return_random_features=True)

    # Extract random features.
    _, _, gp_feature = rfgp_model(self.x_tr, training=True)
    gp_feature_np = gp_feature.numpy()

    prior_kernel_computed = gp_feature_np.dot(gp_feature_np.T)
    prior_kernel_expected = self.rbf_kern_func(self.x_tr, self.x_tr)
    np.testing.assert_allclose(prior_kernel_computed, prior_kernel_expected,
                               **self.cov_tolerance)

  def test_random_feature_posterior_approximation(self):
    """Tests random feature GP's ability in approximating exact GP posterior."""
    # Set momentum = 0.5 so posterior precision matrix is 0.5 * (I + K).
    gp_cov_momentum = 0.5
    gp_cov_ridge_penalty = 1.
    num_inducing = 1024

    rfgp_model = gaussian_process.RandomFeatureGaussianProcess(
        units=1,
        num_inducing=num_inducing,
        normalize_input=False,
        gp_kernel_type='gaussian',
        gp_cov_momentum=gp_cov_momentum,
        gp_cov_ridge_penalty=gp_cov_ridge_penalty)

    # Computes posterior covariance on test data.
    _, _ = rfgp_model(self.x_tr, training=True)
    _, gp_cov_ts = rfgp_model(self.x_ts, training=False)

    # Scale up covariance estimate since prec matrix is down-scaled by momentum.
    post_kernel_computed = gp_cov_ts * gp_cov_momentum
    post_kernel_expected = _compute_posterior_kernel(self.x_tr, self.x_ts,
                                                     self.rbf_kern_func,
                                                     gp_cov_ridge_penalty)
    np.testing.assert_allclose(post_kernel_computed, post_kernel_expected,
                               **self.cov_tolerance)

  def test_random_feature_linear_kernel(self):
    """Tests if linear kernel indeed leads to an identity mapping."""
    # Specify linear kernel
    gp_kernel_type = 'linear'
    normalize_input = False
    scale_random_features = False
    use_custom_random_features = True

    rfgp_model = gaussian_process.RandomFeatureGaussianProcess(
        units=1,
        normalize_input=normalize_input,
        gp_kernel_type=gp_kernel_type,
        scale_random_features=scale_random_features,
        use_custom_random_features=use_custom_random_features,
        return_random_features=True)

    _, _, gp_feature = rfgp_model(self.x_tr, training=True)

    # Check if linear kernel leads to identity mapping.
    np.testing.assert_allclose(gp_feature, self.x_tr, **self.prec_tolerance)

  def test_no_matrix_update_during_test(self):
    """Tests if the precision matrix is not updated during testing."""
    rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1)

    # Training.
    _, gp_covmat_null = rfgp_model(self.x_tr, training=True)
    precision_mat_before_test = rfgp_model._gp_cov_layer.precision_matrix

    # Testing.
    _ = rfgp_model(self.x_ts, training=False)
    precision_mat_after_test = rfgp_model._gp_cov_layer.precision_matrix

    self.assertAllClose(
        gp_covmat_null, tf.eye(self.num_train_sample), atol=1e-4)
    self.assertAllClose(
        precision_mat_before_test, precision_mat_after_test, atol=1e-4)

  def test_state_saving_and_loading(self):
    """Tests if the loaded model returns same results."""
    input_data = np.random.random((1, 2))
    rfgp_model = gaussian_process.RandomFeatureGaussianProcess(units=1)

    inputs = tf_keras.Input((2,), batch_size=1)
    outputs = rfgp_model(inputs)
    model = tf_keras.Model(inputs, outputs)
    gp_output, gp_covmat = model.predict(input_data)

    # Save and then load the model.
    temp_dir = self.get_temp_dir()
    self.addCleanup(shutil.rmtree, temp_dir)
    saved_model_dir = os.path.join(temp_dir, 'rfgp_model')
    model.save(saved_model_dir)
    new_model = tf_keras.models.load_model(saved_model_dir)

    gp_output_new, gp_covmat_new = new_model.predict(input_data)
    self.assertAllClose(gp_output, gp_output_new, atol=1e-4)
    self.assertAllClose(gp_covmat, gp_covmat_new, atol=1e-4)


class MeanFieldLogitsTest(tf.test.TestCase):

  def testMeanFieldLogitsLikelihood(self):
    """Tests if scaling is correct under different likelihood."""
    batch_size = 10
    num_classes = 12
    variance = 1.5
    mean_field_factor = 2.

    rng = np.random.RandomState(0)
    tf.random.set_seed(1)
    logits = rng.randn(batch_size, num_classes)
    covmat = tf.linalg.diag([variance] * batch_size)

    logits_logistic = gaussian_process.mean_field_logits(
        logits, covmat, mean_field_factor=mean_field_factor)

    self.assertAllClose(logits_logistic, logits / 2., atol=1e-4)

  def testMeanFieldLogitsTemperatureScaling(self):
    """Tests using mean_field_logits as temperature scaling method."""
    batch_size = 10
    num_classes = 12

    rng = np.random.RandomState(0)
    tf.random.set_seed(1)
    logits = rng.randn(batch_size, num_classes)

    # Test if there's no change to logits when mean_field_factor < 0.
    logits_no_change = gaussian_process.mean_field_logits(
        logits, covariance_matrix=None, mean_field_factor=-1)

    # Test if mean_field_logits functions as a temperature scaling method when
    # mean_field_factor > 0, with temperature = sqrt(1. + mean_field_factor).
    logits_scale_by_two = gaussian_process.mean_field_logits(
        logits, covariance_matrix=None, mean_field_factor=3.)

    self.assertAllClose(logits_no_change, logits, atol=1e-4)
    self.assertAllClose(logits_scale_by_two, logits / 2., atol=1e-4)


if __name__ == '__main__':
  tf.test.main()