Spaces:
Runtime error
Runtime error
File size: 9,743 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based mixing layers.
Based on the mixing layers use by FNet
(https://aclanthology.org/2022.naacl-main.319/) and Sparse Mixers
(https://arxiv.org/abs/2205.12399).
Mixing layers can be used as drop in replacements for self-attention layers. For
interoperability with attention layers, we use the same `query` and `value` call
signature.
Note: These mixing layers currently only support encoder stacks. Decoder stacks
can be supported in the future by utilizing the `value` inputs.
"""
import enum
import functools
from typing import Callable, Tuple, Union
import gin
import numpy as np
from scipy import linalg
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
_Initializer = Union[str, tf_keras.initializers.Initializer]
default_kernel_initializer = tf_keras.initializers.TruncatedNormal(stddev=2e-2)
@gin.constants_from_enum
class MixingMechanism(enum.Enum):
"""Determines the type of mixing layer.
Possible options:
FOURIER: Fourier Transform mixing.
LINEAR: Mixing using dense matrix multiplications with learnable weights.
HARTLEY: Hartley Transform mixing.
"""
FOURIER = "fourier"
HARTLEY = "hartley"
LINEAR = "linear"
class MixingLayer(tf_keras.layers.Layer):
"""Mixing layer base class.
This class cannot be used directly. It just specifies the API for mixing
layer subclasses. For interoperability with attention layers, we use the same
`query` and `value` call signature.
Based on the mixing layers use by FNet
(https://aclanthology.org/2022.naacl-main.319/) and Sparse Mixers
(https://arxiv.org/abs/2205.12399).
"""
def __init__(self, name: str = "mixing", **kwargs):
"""Initializes layer.
Args:
name: Name for layer.
**kwargs: Keyword arguments.
"""
super().__init__(name=name, **kwargs)
def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
"""Calls the layer.
Subclasses should return tensors of shape
<float>[batch_size, max_seq_length, hidden_dim].
Args:
query: Batch of input embeddings, typically of shape <float>[batch_size,
max_seq_length, hidden_dim].
value: Unused. Included to match attention layer API.
**kwargs: Optional arguments to catch unused attention keyword arguments.
Raises:
NotImplementedError. This class should not be called directly.
"""
raise NotImplementedError("Abstract method")
class FourierTransformLayer(MixingLayer):
"""Fourier Transform layer.
Applies 2D Fourier Transform over final two dimensions of `query` inputs -
typically the sequence and hidden dimensions.
"""
def __init__(self,
use_fft: bool = False,
name: str = "fourier_transform",
**kwargs):
"""Initializes layer.
Args:
use_fft: Whether to use Fast Fourier Transform (True) or the Discrete
Fourier Transform (DFT) matrix (False) to compute the Fourier Transform.
See _pick_fourier_transform() for recommendations on when to use FFT or
DFT.
name: Name for layer.
**kwargs: Keyword arguments.
"""
super().__init__(name=name, **kwargs)
self.use_fft = use_fft
def build(self, input_shape: Tuple[int, ...]):
"""Picks the Fourier Transform implementation."""
self.fourier_transform = _pick_fourier_transform(
self.use_fft,
max_seq_length=input_shape[-2],
hidden_dim=input_shape[-1])
def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
"""Applies layer to `query`.
Args:
query: Batch of input embeddings, typically of shape <float>[batch_size,
max_seq_length, hidden_dim].
value: Unused. Included to match attention layer API.
**kwargs: Optional arguments to catch unused attention keyword arguments.
Returns:
Real part of discrete Fourier Transform of `query` inputs with shape
<float32>[batch_size, max_seq_length, hidden_dim].
"""
del value # Ignored by encoder-only mixing layers
query = tf.cast(query, tf.complex64)
return tf.math.real(self.fourier_transform(query))
class HartleyTransformLayer(MixingLayer):
"""Hartley Transform layer.
Applies 2D Hartley Transform over final two dimensions of `query` inputs -
typically the sequence and hidden dimensions.
"""
def __init__(self,
use_fft: bool = False,
name: str = "hartley_transform",
**kwargs):
"""Initializes layer.
Args:
use_fft: Whether to use Fast Fourier Transform (True) or the Discrete
Fourier Transform (DFT) matrix (False) to compute the Hartley Transform.
See _pick_fourier_transform() for recommendations on when to use FFT or
DFT.
name: Name for layer.
**kwargs: Keyword arguments.
"""
super().__init__(name=name, **kwargs)
self.use_fft = use_fft
def build(self, input_shape: Tuple[int, ...]):
"""Picks the Fourier Transform implementation."""
self.fourier_transform = _pick_fourier_transform(
self.use_fft,
max_seq_length=input_shape[-2],
hidden_dim=input_shape[-1])
def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
"""Applies layer to `query`.
Args:
query: Batch of input embeddings, typically of shape <float>[batch_size,
max_seq_length, hidden_dim].
value: Unused. Included to match attention layer API.
**kwargs: Optional arguments to catch unused attention keyword arguments.
Returns:
Real part of discrete Hartley Transform of `query` inputs with shape
<float32>[batch_size, max_seq_length, hidden_dim].
"""
del value # Ignored by encoder-only mixing layers
query = tf.cast(query, tf.complex64)
frequencies = self.fourier_transform(query)
return tf.math.real(frequencies) - tf.math.imag(frequencies)
class LinearTransformLayer(MixingLayer):
"""Dense, linear transformation layer.
Applies matrix multiplications over sequence and hidden dimensions.
"""
def __init__(self,
kernel_initializer: _Initializer = default_kernel_initializer,
name: str = "linear_transform",
**kwargs):
"""Initializes layer.
Args:
kernel_initializer: Initialization scheme for kernel.
name: Name for layer.
**kwargs: Keyword arguments.
"""
super().__init__(name=name, **kwargs)
self.kernel_initializer = kernel_initializer
def build(self, input_shape: Tuple[int, ...]):
"""Creates the hidden and sequence matrix variables of the layer."""
self.mat_hidden = self.add_weight(
shape=(input_shape[-1], input_shape[-1]),
initializer=tf_utils.clone_initializer(self.kernel_initializer),
trainable=True,
name="hidden_kernel")
self.mat_seq = self.add_weight(
shape=(input_shape[-2], input_shape[-2]),
initializer=tf_utils.clone_initializer(self.kernel_initializer),
trainable=True,
name="seq_kernel")
def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
"""Applies layer to `query`.
Args:
query: Batch of input embeddings, typically of shape <float>[batch_size,
max_seq_length, hidden_dim].
value: Unused. Included to match attention layer API.
**kwargs: Optional arguments to catch unused attention keyword arguments.
Returns:
Linearly transformed `query` inputs with shape
<float>[batch_size, max_seq_length, hidden_dim].
"""
del value # Ignored by encoder-only mixing layers
return tf.einsum("bij,jk,ni->bnk", query, self.mat_hidden, self.mat_seq)
def _pick_fourier_transform(
use_fft: bool, max_seq_length: int,
hidden_dim: int) -> Callable[[tf.Tensor], tf.Tensor]:
"""Returns FFT or DFT Fourier Transform implementation.
On TPUs, we recommend using the Discrete Fourier Transform (DFT) matrix
(use_fft=False), except for very long sequence lengths. On GPUs and CPUs, the
Fast Fourier Transform (use_fft=True) is generally optimal for all sequence
lengths.
Note: When using the FFT it is recommended to use a sequence length that is a
power of 2.
Args:
use_fft: If True, return FFT. Otherwise, return DFT matrix.
max_seq_length: Maximum sequence length of inputs. Only used if
use_fft=False.
hidden_dim: Size of hidden dimension of inputs. Only used if use_fft=False.
Returns:
Fourier Transform.
"""
if use_fft:
return tf.signal.fft2d
else:
dft_mat_seq = linalg.dft(max_seq_length).astype(np.complex64)
dft_mat_hidden = linalg.dft(hidden_dim).astype(np.complex64)
def two_dim_matmul(x: tf.Tensor, matrix_dim_one: tf.Tensor,
matrix_dim_two: tf.Tensor) -> tf.Tensor:
"""Applies 2D matrix multiplication to input tensors of rank >= 2."""
return tf.einsum("...ij,jk,ni->...nk", tf.cast(x, tf.complex64),
matrix_dim_two, matrix_dim_one)
return functools.partial(
two_dim_matmul,
matrix_dim_one=dft_mat_seq,
matrix_dim_two=dft_mat_hidden)
|