File size: 9,743 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras-based mixing layers.

Based on the mixing layers use by FNet
(https://aclanthology.org/2022.naacl-main.319/) and Sparse Mixers
(https://arxiv.org/abs/2205.12399).

Mixing layers can be used as drop in replacements for self-attention layers. For
interoperability with attention layers, we use the same `query` and `value` call
signature.

Note: These mixing layers currently only support encoder stacks. Decoder stacks
can be supported in the future by utilizing the `value` inputs.
"""

import enum
import functools
from typing import Callable, Tuple, Union

import gin
import numpy as np
from scipy import linalg
import tensorflow as tf, tf_keras

from official.modeling import tf_utils

_Initializer = Union[str, tf_keras.initializers.Initializer]

default_kernel_initializer = tf_keras.initializers.TruncatedNormal(stddev=2e-2)


@gin.constants_from_enum
class MixingMechanism(enum.Enum):
  """Determines the type of mixing layer.

  Possible options:
    FOURIER: Fourier Transform mixing.
    LINEAR: Mixing using dense matrix multiplications with learnable weights.
    HARTLEY: Hartley Transform mixing.
  """
  FOURIER = "fourier"
  HARTLEY = "hartley"
  LINEAR = "linear"


class MixingLayer(tf_keras.layers.Layer):
  """Mixing layer base class.

  This class cannot be used directly. It just specifies the API for mixing
  layer subclasses. For interoperability with attention layers, we use the same
  `query` and `value` call signature.

  Based on the mixing layers use by FNet
  (https://aclanthology.org/2022.naacl-main.319/) and Sparse Mixers
  (https://arxiv.org/abs/2205.12399).
  """

  def __init__(self, name: str = "mixing", **kwargs):
    """Initializes layer.

    Args:
      name: Name for layer.
      **kwargs: Keyword arguments.
    """
    super().__init__(name=name, **kwargs)

  def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
    """Calls the layer.

    Subclasses should return tensors of shape
    <float>[batch_size, max_seq_length, hidden_dim].

    Args:
      query: Batch of input embeddings, typically of shape <float>[batch_size,
        max_seq_length, hidden_dim].
      value: Unused. Included to match attention layer API.
      **kwargs: Optional arguments to catch unused attention keyword arguments.

    Raises:
      NotImplementedError. This class should not be called directly.
    """
    raise NotImplementedError("Abstract method")


class FourierTransformLayer(MixingLayer):
  """Fourier Transform layer.

  Applies 2D Fourier Transform over final two dimensions of `query` inputs -
  typically the sequence and hidden dimensions.
  """

  def __init__(self,
               use_fft: bool = False,
               name: str = "fourier_transform",
               **kwargs):
    """Initializes layer.

    Args:
      use_fft: Whether to use Fast Fourier Transform (True) or the Discrete
        Fourier Transform (DFT) matrix (False) to compute the Fourier Transform.
        See _pick_fourier_transform() for recommendations on when to use FFT or
        DFT.
      name: Name for layer.
      **kwargs: Keyword arguments.
    """
    super().__init__(name=name, **kwargs)
    self.use_fft = use_fft

  def build(self, input_shape: Tuple[int, ...]):
    """Picks the Fourier Transform implementation."""
    self.fourier_transform = _pick_fourier_transform(
        self.use_fft,
        max_seq_length=input_shape[-2],
        hidden_dim=input_shape[-1])

  def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
    """Applies layer to `query`.

    Args:
      query: Batch of input embeddings, typically of shape <float>[batch_size,
        max_seq_length, hidden_dim].
      value: Unused. Included to match attention layer API.
      **kwargs: Optional arguments to catch unused attention keyword arguments.

    Returns:
      Real part of discrete Fourier Transform of `query` inputs with shape
        <float32>[batch_size, max_seq_length, hidden_dim].
    """
    del value  # Ignored by encoder-only mixing layers
    query = tf.cast(query, tf.complex64)
    return tf.math.real(self.fourier_transform(query))


class HartleyTransformLayer(MixingLayer):
  """Hartley Transform layer.

  Applies 2D Hartley Transform over final two dimensions of `query` inputs -
  typically the sequence and hidden dimensions.
  """

  def __init__(self,
               use_fft: bool = False,
               name: str = "hartley_transform",
               **kwargs):
    """Initializes layer.

    Args:
      use_fft: Whether to use Fast Fourier Transform (True) or the Discrete
        Fourier Transform (DFT) matrix (False) to compute the Hartley Transform.
        See _pick_fourier_transform() for recommendations on when to use FFT or
        DFT.
      name: Name for layer.
      **kwargs: Keyword arguments.
    """
    super().__init__(name=name, **kwargs)
    self.use_fft = use_fft

  def build(self, input_shape: Tuple[int, ...]):
    """Picks the Fourier Transform implementation."""
    self.fourier_transform = _pick_fourier_transform(
        self.use_fft,
        max_seq_length=input_shape[-2],
        hidden_dim=input_shape[-1])

  def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
    """Applies layer to `query`.

    Args:
      query: Batch of input embeddings, typically of shape <float>[batch_size,
        max_seq_length, hidden_dim].
      value: Unused. Included to match attention layer API.
      **kwargs: Optional arguments to catch unused attention keyword arguments.

    Returns:
      Real part of discrete Hartley Transform of `query` inputs with shape
        <float32>[batch_size, max_seq_length, hidden_dim].
    """
    del value  # Ignored by encoder-only mixing layers
    query = tf.cast(query, tf.complex64)
    frequencies = self.fourier_transform(query)
    return tf.math.real(frequencies) - tf.math.imag(frequencies)


class LinearTransformLayer(MixingLayer):
  """Dense, linear transformation layer.

  Applies matrix multiplications over sequence and hidden dimensions.
  """

  def __init__(self,
               kernel_initializer: _Initializer = default_kernel_initializer,
               name: str = "linear_transform",
               **kwargs):
    """Initializes layer.

    Args:
      kernel_initializer: Initialization scheme for kernel.
      name: Name for layer.
      **kwargs: Keyword arguments.
    """
    super().__init__(name=name, **kwargs)
    self.kernel_initializer = kernel_initializer

  def build(self, input_shape: Tuple[int, ...]):
    """Creates the hidden and sequence matrix variables of the layer."""
    self.mat_hidden = self.add_weight(
        shape=(input_shape[-1], input_shape[-1]),
        initializer=tf_utils.clone_initializer(self.kernel_initializer),
        trainable=True,
        name="hidden_kernel")
    self.mat_seq = self.add_weight(
        shape=(input_shape[-2], input_shape[-2]),
        initializer=tf_utils.clone_initializer(self.kernel_initializer),
        trainable=True,
        name="seq_kernel")

  def call(self, query: tf.Tensor, value: tf.Tensor, **kwargs) -> tf.Tensor:
    """Applies layer to `query`.

    Args:
      query: Batch of input embeddings, typically of shape <float>[batch_size,
        max_seq_length, hidden_dim].
      value: Unused. Included to match attention layer API.
      **kwargs: Optional arguments to catch unused attention keyword arguments.

    Returns:
      Linearly transformed `query` inputs with shape
        <float>[batch_size, max_seq_length, hidden_dim].
    """
    del value  # Ignored by encoder-only mixing layers

    return tf.einsum("bij,jk,ni->bnk", query, self.mat_hidden, self.mat_seq)


def _pick_fourier_transform(
    use_fft: bool, max_seq_length: int,
    hidden_dim: int) -> Callable[[tf.Tensor], tf.Tensor]:
  """Returns FFT or DFT Fourier Transform implementation.

  On TPUs, we recommend using the Discrete Fourier Transform (DFT) matrix
  (use_fft=False), except for very long sequence lengths. On GPUs and CPUs, the
  Fast Fourier Transform (use_fft=True) is generally optimal for all sequence
  lengths.

  Note: When using the FFT it is recommended to use a sequence length that is a
  power of 2.

  Args:
    use_fft: If True, return FFT. Otherwise, return DFT matrix.
    max_seq_length: Maximum sequence length of inputs. Only used if
      use_fft=False.
    hidden_dim: Size of hidden dimension of inputs. Only used if use_fft=False.

  Returns:
    Fourier Transform.
  """
  if use_fft:
    return tf.signal.fft2d
  else:
    dft_mat_seq = linalg.dft(max_seq_length).astype(np.complex64)
    dft_mat_hidden = linalg.dft(hidden_dim).astype(np.complex64)

    def two_dim_matmul(x: tf.Tensor, matrix_dim_one: tf.Tensor,
                       matrix_dim_two: tf.Tensor) -> tf.Tensor:
      """Applies 2D matrix multiplication to input tensors of rank >= 2."""
      return tf.einsum("...ij,jk,ni->...nk", tf.cast(x, tf.complex64),
                       matrix_dim_two, matrix_dim_one)

    return functools.partial(
        two_dim_matmul,
        matrix_dim_one=dft_mat_seq,
        matrix_dim_two=dft_mat_hidden)