Spaces:
Runtime error
Runtime error
File size: 10,890 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.layers import mobile_bert_layers
from official.nlp.modeling.networks import mobile_bert_encoder
def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0):
"""Generate consistent fake integer input sequences."""
np.random.seed(seed)
fake_input = []
for _ in range(batch_size):
fake_input.append([])
for _ in range(seq_len):
fake_input[-1].append(np.random.randint(0, vocab_size))
fake_input = np.asarray(fake_input)
return fake_input
class MobileBertEncoderTest(parameterized.TestCase, tf.test.TestCase):
def test_embedding_layer_with_token_type(self):
layer = mobile_bert_layers.MobileBertEmbedding(10, 8, 2, 16)
input_seq = tf.Variable([[2, 3, 4, 5]])
token_type = tf.Variable([[0, 1, 1, 1]])
output = layer(input_seq, token_type)
output_shape = output.shape.as_list()
expected_shape = [1, 4, 16]
self.assertListEqual(output_shape, expected_shape, msg=None)
def test_embedding_layer_without_token_type(self):
layer = mobile_bert_layers.MobileBertEmbedding(10, 8, 2, 16)
input_seq = tf.Variable([[2, 3, 4, 5]])
output = layer(input_seq)
output_shape = output.shape.as_list()
expected_shape = [1, 4, 16]
self.assertListEqual(output_shape, expected_shape, msg=None)
def test_embedding_layer_get_config(self):
layer = mobile_bert_layers.MobileBertEmbedding(
word_vocab_size=16,
word_embed_size=32,
type_vocab_size=4,
output_embed_size=32,
max_sequence_length=32,
normalization_type='layer_norm',
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.01),
dropout_rate=0.5)
layer_config = layer.get_config()
new_layer = mobile_bert_layers.MobileBertEmbedding.from_config(layer_config)
self.assertEqual(layer_config, new_layer.get_config())
def test_no_norm(self):
layer = mobile_bert_layers.NoNorm()
feature = tf.random.normal([2, 3, 4])
output = layer(feature)
output_shape = output.shape.as_list()
expected_shape = [2, 3, 4]
self.assertListEqual(output_shape, expected_shape, msg=None)
@parameterized.named_parameters(('with_kq_shared_bottleneck', False),
('without_kq_shared_bottleneck', True))
def test_transfomer_kq_shared_bottleneck(self, is_kq_shared):
feature = tf.random.uniform([2, 3, 512])
layer = mobile_bert_layers.MobileBertTransformer(
key_query_shared_bottleneck=is_kq_shared)
output = layer(feature)
output_shape = output.shape.as_list()
expected_shape = [2, 3, 512]
self.assertListEqual(output_shape, expected_shape, msg=None)
def test_transfomer_with_mask(self):
feature = tf.random.uniform([2, 3, 512])
input_mask = [[[0., 0., 1.], [0., 0., 1.], [0., 0., 1.]],
[[0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]]
input_mask = np.asarray(input_mask)
layer = mobile_bert_layers.MobileBertTransformer()
output = layer(feature, input_mask)
output_shape = output.shape.as_list()
expected_shape = [2, 3, 512]
self.assertListEqual(output_shape, expected_shape, msg=None)
def test_transfomer_return_attention_score(self):
sequence_length = 5
num_attention_heads = 8
feature = tf.random.uniform([2, sequence_length, 512])
layer = mobile_bert_layers.MobileBertTransformer(
num_attention_heads=num_attention_heads)
_, attention_score = layer(feature, return_attention_scores=True)
expected_shape = [2, num_attention_heads, sequence_length, sequence_length]
self.assertListEqual(
attention_score.shape.as_list(), expected_shape, msg=None)
def test_transformer_get_config(self):
layer = mobile_bert_layers.MobileBertTransformer(
hidden_size=32,
num_attention_heads=2,
intermediate_size=48,
intermediate_act_fn='gelu',
hidden_dropout_prob=0.5,
attention_probs_dropout_prob=0.4,
intra_bottleneck_size=64,
use_bottleneck_attention=True,
key_query_shared_bottleneck=False,
num_feedforward_networks=2,
normalization_type='layer_norm',
initializer=tf_keras.initializers.TruncatedNormal(stddev=0.01),
name='block')
layer_config = layer.get_config()
new_layer = mobile_bert_layers.MobileBertTransformer.from_config(
layer_config)
self.assertEqual(layer_config, new_layer.get_config())
class MobileBertMaskedLMTest(tf.test.TestCase):
def create_layer(self,
vocab_size,
hidden_size,
embedding_width,
output='predictions',
xformer_stack=None):
# First, create a transformer stack that we can use to get the LM's
# vocabulary weight.
if xformer_stack is None:
xformer_stack = mobile_bert_encoder.MobileBERTEncoder(
word_vocab_size=vocab_size,
num_blocks=1,
hidden_size=hidden_size,
num_attention_heads=4,
word_embed_size=embedding_width)
# Create a maskedLM from the transformer stack.
test_layer = mobile_bert_layers.MobileBertMaskedLM(
embedding_table=xformer_stack.get_embedding_table(), output=output)
return test_layer
def test_layer_creation(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
embedding_width = 32
num_predictions = 21
test_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
embedding_width=embedding_width)
# Make sure that the output tensor of the masked LM is the right shape.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions=masked_positions)
expected_output_shape = [None, num_predictions, vocab_size]
self.assertEqual(expected_output_shape, output.shape.as_list())
def test_layer_invocation_with_external_logits(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
embedding_width = 32
num_predictions = 21
xformer_stack = mobile_bert_encoder.MobileBERTEncoder(
word_vocab_size=vocab_size,
num_blocks=1,
hidden_size=hidden_size,
num_attention_heads=4,
word_embed_size=embedding_width)
test_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
embedding_width=embedding_width,
xformer_stack=xformer_stack,
output='predictions')
logit_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
embedding_width=embedding_width,
xformer_stack=xformer_stack,
output='logits')
# Create a model from the masked LM layer.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
logit_output = logit_layer(lm_input_tensor, masked_positions)
logit_output = tf_keras.layers.Activation(tf.nn.log_softmax)(logit_output)
logit_layer.set_weights(test_layer.get_weights())
model = tf_keras.Model([lm_input_tensor, masked_positions], output)
logits_model = tf_keras.Model(([lm_input_tensor, masked_positions]),
logit_output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
sequence_length, size=(batch_size, num_predictions))
# ref_outputs = model.predict([lm_input_data, masked_position_data])
# outputs = logits_model.predict([lm_input_data, masked_position_data])
ref_outputs = model([lm_input_data, masked_position_data])
outputs = logits_model([lm_input_data, masked_position_data])
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, num_predictions, vocab_size)
self.assertEqual(expected_output_shape, ref_outputs.shape)
self.assertEqual(expected_output_shape, outputs.shape)
self.assertAllClose(ref_outputs, outputs)
def test_layer_invocation(self):
vocab_size = 100
sequence_length = 32
hidden_size = 64
embedding_width = 32
num_predictions = 21
test_layer = self.create_layer(
vocab_size=vocab_size,
hidden_size=hidden_size,
embedding_width=embedding_width)
# Create a model from the masked LM layer.
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(shape=(num_predictions,), dtype=tf.int32)
output = test_layer(lm_input_tensor, masked_positions)
model = tf_keras.Model([lm_input_tensor, masked_positions], output)
# Invoke the masked LM on some fake data to make sure there are no runtime
# errors in the code.
batch_size = 3
lm_input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, hidden_size))
masked_position_data = np.random.randint(
2, size=(batch_size, num_predictions))
_ = model.predict([lm_input_data, masked_position_data])
def test_unknown_output_type_fails(self):
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
_ = self.create_layer(
vocab_size=8, hidden_size=8, embedding_width=4, output='bad')
def test_hidden_size_smaller_than_embedding_width(self):
hidden_size = 8
sequence_length = 32
num_predictions = 20
with self.assertRaisesRegex(
ValueError, 'hidden size 8 cannot be smaller than embedding width 16.'):
test_layer = self.create_layer(
vocab_size=8, hidden_size=8, embedding_width=16)
lm_input_tensor = tf_keras.Input(shape=(sequence_length, hidden_size))
masked_positions = tf_keras.Input(
shape=(num_predictions,), dtype=tf.int32)
_ = test_layer(lm_input_tensor, masked_positions)
if __name__ == '__main__':
tf.test.main()
|