File size: 9,414 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for moe.py."""

import numpy as np
import tensorflow as tf, tf_keras

from official.nlp.modeling.layers import moe


def small_config():
  """Creates a small model config that can be used by all tests."""
  config = {}
  config['d_ff'] = 32
  config['output_dropout'] = 0.1

  config['num_experts'] = 2
  config['expert_d_ff'] = 33
  config['expert_dropout_rate'] = 0.1
  config['jitter_noise'] = 0.1
  config['train_capacity_factor'] = 1.0
  config['eval_capacity_factor'] = 1.0
  config['examples_per_group'] = 2.0

  config['backbone_d_ff'] = 13
  return config


def make_input_ones(batch_size: int = 4,
                    seq_length: int = 10,
                    hidden_dim: int = 7) -> tf.Tensor:
  return tf.ones((batch_size, seq_length, hidden_dim))


def make_experts_input_ones(num_groups: int = 1,
                            num_experts: int = 2,
                            expert_capacity: int = 5,
                            hidden_dim: int = 7) -> tf.Tensor:
  return tf.ones((num_groups, num_experts, expert_capacity, hidden_dim))


class MoeTest(tf.test.TestCase):

  def tearDown(self):
    super().tearDown()
    tf_keras.mixed_precision.set_global_policy('float32')

  def test_router_z_loss_dtype(self):
    x = tf.constant([[[10.0, 5.0]]], dtype=tf.float32)
    y = moe._router_z_loss(x)
    expected = (5 + np.log(np.exp(5) + 1))**2
    self.assertAllClose(expected, y, atol=1e-7)
    self.assertDTypeEqual(y, tf.float32)

  def test_router_z_loss_shape(self):
    x = make_input_ones(2, 5, 7)
    y = moe._router_z_loss(x)
    expected = (np.log(7) + 1)**2
    self.assertAllClose(expected, y, atol=1e-7)

  def test_experts_choose_masked_router_dtype_shape(self):
    tf_keras.mixed_precision.set_global_policy('mixed_bfloat16')
    num_groups = 2
    tokens_per_group = 3
    hidden_dim = tokens_per_group
    num_experts = tokens_per_group
    expert_capacity = 2
    x = np.zeros([num_groups, tokens_per_group, hidden_dim])
    x[0, 0, 0] += 1
    x[0, :2, :2] += 1
    x[1, 1:, 1:] += 1
    x[1, -1, -1] += 1

    router = moe.ExpertsChooseMaskedRouter(
        num_experts=num_experts,
        jitter_noise=0.1,
        use_bias=True,
        kernel_initializer=tf_keras.initializers.get('identity'),
        bias_initializer=tf_keras.initializers.get('ones'))
    router_mask = router(x, expert_capacity=expert_capacity, training=False)

    self.assertDTypeEqual(router_mask.dispatch_mask, tf.bfloat16)
    self.assertDTypeEqual(router_mask.combine_array, tf.bfloat16)

    expect_shape = [num_groups, tokens_per_group, num_experts, expert_capacity]
    self.assertEqual(expect_shape, router_mask.dispatch_mask.shape)
    self.assertEqual(expect_shape, router_mask.combine_array.shape)

    # top_k call may not be sorted, so can't compare the output directly
    # Check that the output contains only 0s and 1s
    out_dm = router_mask.dispatch_mask.numpy()
    self.assertSetEqual({0, 1}, set(out_dm.flatten().astype(np.int32)))
    # Check that the right tokens for selected
    out_dm_indices = np.dot(
        out_dm.transpose((0, 2, 3, 1)), np.arange(tokens_per_group))
    # Shape [num_groups, num_experts, expert_capacity]
    self.assertSetEqual({0, 1}, set(out_dm_indices[0, 0, :].astype(np.int32)))
    self.assertSetEqual({1, 2}, set(out_dm_indices[0, 1, :].astype(np.int32)))
    self.assertSetEqual({1, 2}, set(out_dm_indices[0, 2, :].astype(np.int32)))
    self.assertSetEqual({0, 1}, set(out_dm_indices[1, 0, :].astype(np.int32)))
    self.assertSetEqual({0, 1}, set(out_dm_indices[1, 1, :].astype(np.int32)))
    self.assertSetEqual({1, 2}, set(out_dm_indices[1, 2, :].astype(np.int32)))

    out_ca = router_mask.combine_array.numpy()
    out_ca = np.dot(out_ca, np.ones((expert_capacity,)))

    expected_combine_array = np.array([[[0.66, 0.0, 0.0], [0.42, 0.42, 0.16],
                                        [0.0, 0.33, 0.33]],
                                       [[0.33, 0.33, 0.0], [0.16, 0.42, 0.42],
                                        [0.0, 0.0, 0.66]]])
    self.assertAllClose(expected_combine_array, out_ca, atol=1e-2)

  def test_feed_forward_shape_and_vars(self):
    config = small_config()
    layer = moe.FeedForward(
        d_ff=config['d_ff'], output_dropout=config['output_dropout'])
    inputs = make_input_ones()
    outputs = layer(inputs)
    self.assertAllEqual(tf.shape(inputs), tf.shape(outputs))
    var_names = sorted([v.name for v in layer.trainable_variables])
    self.assertAllEqual([
        'feed_forward/intermediate/bias:0',
        'feed_forward/intermediate/kernel:0', 'feed_forward/output/bias:0',
        'feed_forward/output/kernel:0'
    ], var_names)

  def test_feed_forward_manual(self):
    config = small_config()
    layer = moe.FeedForward(
        d_ff=config['d_ff'],
        output_dropout=config['output_dropout'],
        activation=tf_keras.activations.relu,
        kernel_initializer=tf_keras.initializers.get('ones'),
        bias_initializer=tf_keras.initializers.get('ones'))
    inputs = make_input_ones(1, 2, 3)
    outputs = layer(inputs, training=False)
    manual_outputs = tf.constant([[[129.0, 129.0, 129.0], [129.0, 129.0,
                                                           129.0]]])
    self.assertAllClose(manual_outputs, outputs, atol=1e-7)

  def test_feed_forward_experts_shape_and_vars(self):
    config = small_config()
    layer = moe.FeedForwardExperts(
        num_experts=config['num_experts'],
        d_ff=config['expert_d_ff'],
        output_dropout=config['expert_dropout_rate'])
    inputs = make_experts_input_ones()
    outputs = layer(inputs)
    self.assertAllEqual(tf.shape(inputs), tf.shape(outputs))
    var_names = sorted([v.name for v in layer.trainable_variables])
    self.assertAllEqual([
        'experts/intermediate/bias:0', 'experts/intermediate/kernel:0',
        'experts/output/bias:0', 'experts/output/kernel:0'
    ], var_names)

  def test_feed_forward_experts_manual(self):
    config = small_config()
    layer = moe.FeedForwardExperts(
        num_experts=1,
        d_ff=config['expert_d_ff'],
        output_dropout=config['expert_dropout_rate'],
        activation=tf_keras.activations.relu,
        kernel_initializer=tf_keras.initializers.get('ones'),
        bias_initializer=tf_keras.initializers.get('ones'))
    inputs = make_experts_input_ones(1, 1, 2, 3)
    outputs = layer(inputs, training=False)
    manual_outputs = tf.constant([[[[133.0, 133.0, 133.0],
                                    [133.0, 133.0, 133.0]]]])
    self.assertAllClose(manual_outputs, outputs, atol=1e-7)

  def test_moe_layer(self):
    config = small_config()
    experts = moe.FeedForwardExperts(
        num_experts=config['num_experts'],
        d_ff=config['expert_d_ff'],
        output_dropout=config['expert_dropout_rate'])
    router = moe.ExpertsChooseMaskedRouter(
        config['num_experts'], jitter_noise=config['jitter_noise'])
    moe_layer = moe.MoeLayer(
        experts,
        router,
        train_capacity_factor=config['train_capacity_factor'],
        eval_capacity_factor=config['eval_capacity_factor'],
        examples_per_group=config['examples_per_group'])

    inputs = make_input_ones()
    outputs = moe_layer(inputs, training=True)
    self.assertAllEqual(tf.shape(inputs), tf.shape(outputs))

    var_names = sorted([v.name for v in moe_layer.trainable_variables])
    self.assertAllEqual([
        'moe/experts/intermediate/bias:0', 'moe/experts/intermediate/kernel:0',
        'moe/experts/output/bias:0', 'moe/experts/output/kernel:0',
        'moe/router/router_weights/bias:0', 'moe/router/router_weights/kernel:0'
    ], var_names)
    self.assertLen(moe_layer.losses, 1)
    metrics = [metric.name for metric in moe_layer.metrics]
    self.assertSetEqual(
        {
            'router_z_loss', 'unscaled_router_z_loss', 'load_balancing_loss',
            'fraction_tokens_left_behind', 'router_confidence', 'expert_usage'
        }, set(metrics))

  def test_moe_layer_with_backbone(self):
    config = small_config()
    experts = moe.FeedForwardExperts(
        num_experts=config['num_experts'],
        d_ff=config['expert_d_ff'],
        output_dropout=config['expert_dropout_rate'])
    router = moe.ExpertsChooseMaskedRouter(
        config['num_experts'], jitter_noise=config['jitter_noise'])
    moe_layer = moe.MoeLayer(
        experts,
        router,
        train_capacity_factor=config['train_capacity_factor'],
        eval_capacity_factor=config['eval_capacity_factor'],
        examples_per_group=config['examples_per_group'])
    layer = moe.MoeLayerWithBackbone(moe_layer, config['backbone_d_ff'])

    inputs = make_input_ones()
    outputs = layer(inputs)
    self.assertAllEqual(tf.shape(inputs), tf.shape(outputs))


if __name__ == '__main__':
  tf.test.main()