Spaces:
Runtime error
Runtime error
File size: 11,347 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based positional embedding layer."""
# pylint: disable=g-classes-have-attributes
import math
from typing import Optional
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
Initializer = tf_keras.initializers.Initializer
@tf_keras.utils.register_keras_serializable(package="Text")
class PositionEmbedding(tf_keras.layers.Layer):
"""Creates a positional embedding.
Example:
```python
position_embedding = PositionEmbedding(max_length=100)
inputs = tf_keras.Input((100, 32), dtype=tf.float32)
outputs = position_embedding(inputs)
```
Args:
max_length: The maximum size of the dynamic sequence.
initializer: The initializer to use for the embedding weights. Defaults to
"glorot_uniform".
seq_axis: The axis of the input tensor where we add the embeddings.
Reference: This layer creates a positional embedding as described in
[BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding](https://arxiv.org/abs/1810.04805).
"""
def __init__(self,
max_length,
initializer="glorot_uniform",
seq_axis=1,
**kwargs):
super().__init__(**kwargs)
if max_length is None:
raise ValueError(
"`max_length` must be an Integer, not `None`."
)
self._max_length = max_length
self._initializer = tf_keras.initializers.get(initializer)
self._seq_axis = seq_axis
def get_config(self):
config = {
"max_length": self._max_length,
"initializer": tf_keras.initializers.serialize(self._initializer),
"seq_axis": self._seq_axis,
}
base_config = super(PositionEmbedding, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
dimension_list = input_shape
width = dimension_list[-1]
weight_sequence_length = self._max_length
self._position_embeddings = self.add_weight(
"embeddings",
shape=[weight_sequence_length, width],
initializer=self._initializer)
super().build(input_shape)
def call(self, inputs):
input_shape = tf.shape(inputs)
actual_seq_len = input_shape[self._seq_axis]
position_embeddings = self._position_embeddings[:actual_seq_len, :]
new_shape = [1 for _ in inputs.get_shape().as_list()]
new_shape[self._seq_axis] = actual_seq_len
new_shape[-1] = position_embeddings.get_shape().as_list()[-1]
position_embeddings = tf.reshape(position_embeddings, new_shape)
return tf.broadcast_to(position_embeddings, input_shape)
@tf_keras.utils.register_keras_serializable(package="Text")
class RelativePositionEmbedding(tf_keras.layers.Layer):
"""Creates a positional embedding.
This layer calculates the position encoding as a mix of sine and cosine
functions with geometrically increasing wavelengths. Defined and formulized in
"Attention is All You Need", section 3.5.
(https://arxiv.org/abs/1706.03762).
Args:
hidden_size: Size of the hidden layer.
min_timescale: Minimum scale that will be applied at each position
max_timescale: Maximum scale that will be applied at each position.
"""
def __init__(self,
hidden_size: int,
min_timescale: float = 1.0,
max_timescale: float = 1.0e4,
**kwargs):
# We need to have a default dtype of float32, since the inputs (which Keras
# usually uses to infer the dtype) will always be int32.
# We compute the positional encoding in float32 even if the model uses
# float16, as many of the ops used, like log and exp, are numerically
# unstable in float16.
if "dtype" not in kwargs:
kwargs["dtype"] = "float32"
super().__init__(**kwargs)
self._hidden_size = hidden_size
self._min_timescale = min_timescale
self._max_timescale = max_timescale
def get_config(self):
config = {
"hidden_size": self._hidden_size,
"min_timescale": self._min_timescale,
"max_timescale": self._max_timescale,
}
base_config = super(RelativePositionEmbedding, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, length=None):
"""Implements call() for the layer.
Args:
inputs: An tensor whose second dimension will be used as `length`. If
`None`, the other `length` argument must be specified.
length: An optional integer specifying the number of positions. If both
`inputs` and `length` are spcified, `length` must be equal to the second
dimension of `inputs`.
Returns:
A tensor in shape of `(length, hidden_size)`.
"""
if inputs is None and length is None:
raise ValueError("If inputs is None, `length` must be set in "
"RelativePositionEmbedding().")
if inputs is not None:
input_shape = tf_utils.get_shape_list(inputs)
if length is not None and length != input_shape[1]:
raise ValueError(
"If inputs is not None, `length` must equal to input_shape[1].")
length = input_shape[1]
position = tf.cast(tf.range(length), tf.float32)
num_timescales = self._hidden_size // 2
min_timescale, max_timescale = self._min_timescale, self._max_timescale
log_timescale_increment = (
math.log(float(max_timescale) / float(min_timescale)) /
(tf.cast(num_timescales, tf.float32) - 1))
inv_timescales = min_timescale * tf.exp(
tf.cast(tf.range(num_timescales), tf.float32) *
-log_timescale_increment)
scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(
inv_timescales, 0)
position_embeddings = tf.concat(
[tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
return position_embeddings
def _relative_position_bucket(relative_position,
bidirectional=True,
num_buckets=32,
max_distance=128):
"""Translate relative position to a bucket number for relative attention.
The relative position is defined as memory_position - query_position, i.e.
the distance in tokens from the attending position to the attended-to
position.
If `bidirectional=False`, then positive relative positions are invalid.
We use smaller buckets for small absolute relative_position and larger
buckets for larger absolute relative_positions.
All relative positions >=max_distance map to the same bucket.
All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences
than the model has been trained on.
Args:
relative_position: An int32 Tensor
bidirectional: A boolean - whether the attention is bidirectional
num_buckets: An integer
max_distance: An integer
Returns:
A Tensor with the same shape as relative_position, containing int32
values in the range [0, num_buckets)
"""
ret = 0
n = -relative_position
if bidirectional:
num_buckets //= 2
ret += tf.cast(tf.math.less(n, 0), tf.int32) * num_buckets
n = tf.math.abs(n)
else:
n = tf.math.maximum(n, 0)
# now n is in the range [0, inf)
max_exact = num_buckets // 2
is_small = tf.math.less(n, max_exact)
val_if_large = max_exact + tf.dtypes.cast(
tf.math.log(tf.cast(n, tf.float32) / max_exact) /
math.log(max_distance / max_exact) * (num_buckets - max_exact),
tf.int32,
)
val_if_large = tf.math.minimum(val_if_large, num_buckets - 1)
ret += tf.where(is_small, n, val_if_large)
return ret
@tf_keras.utils.register_keras_serializable(package="Text")
class RelativePositionBias(tf_keras.layers.Layer):
"""Relative position embedding via per-head bias in T5 style.
Reference implementation in MeshTF:
https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L1000
This layer implements the relative position bias used in "Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer"
(https://arxiv.org/abs/1910.10683)
"""
def __init__(self,
num_heads: int,
relative_attention_num_buckets: int = 32,
relative_attention_max_distance: int = 128,
bidirectional: bool = True,
embeddings_initializer: Optional[Initializer] = None,
**kwargs):
super().__init__(**kwargs)
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.bidirectional = bidirectional
self.relative_attention_max_distance = relative_attention_max_distance
if embeddings_initializer:
self._embed_init = embeddings_initializer
else:
self._embed_init = tf_keras.initializers.TruncatedNormal(stddev=1.0)
with tf.name_scope(self.name):
self._relative_attention_bias = self.add_weight(
"rel_embedding",
shape=[self.relative_attention_num_buckets, self.num_heads],
initializer=self._embed_init,
dtype=self.dtype,
trainable=True)
def get_config(self):
config = {
"num_heads":
self.num_heads,
"relative_attention_num_buckets":
self.relative_attention_num_buckets,
"relative_attention_max_distance":
self.relative_attention_max_distance,
"bidirectional":
self.bidirectional,
"embeddings_initializer":
tf_keras.initializers.serialize(self._embed_init),
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, query: tf.Tensor, key: tf.Tensor):
"""Implements the forward pass.
Args:
query: query input tensor shape [batch, query length, hidden size].
key: key input tensor shape [batch, key length, hidden size].
Returns:
A tensor in shape of [batch, heads, query length, key length].
"""
batch_size, qlen = tf_utils.get_shape_list(query)[:2]
klen = tf_utils.get_shape_list(key)[1]
context_position = tf.range(qlen)[:, None]
memory_position = tf.range(klen)[None, :]
relative_position = memory_position - context_position
rp_bucket = _relative_position_bucket(
relative_position,
bidirectional=self.bidirectional,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance)
values = tf.nn.embedding_lookup(self._relative_attention_bias, rp_bucket)
values = tf.expand_dims(
tf.transpose(values, [2, 0, 1]),
axis=0) # shape (1, num_heads, qlen, klen)
values = tf.tile(values, [batch_size, 1, 1, 1])
return values
|