File size: 11,347 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Keras-based positional embedding layer."""
# pylint: disable=g-classes-have-attributes
import math
from typing import Optional

import tensorflow as tf, tf_keras

from official.modeling import tf_utils

Initializer = tf_keras.initializers.Initializer


@tf_keras.utils.register_keras_serializable(package="Text")
class PositionEmbedding(tf_keras.layers.Layer):
  """Creates a positional embedding.

  Example:
  ```python
  position_embedding = PositionEmbedding(max_length=100)
  inputs = tf_keras.Input((100, 32), dtype=tf.float32)
  outputs = position_embedding(inputs)
  ```


  Args:
    max_length: The maximum size of the dynamic sequence.
    initializer: The initializer to use for the embedding weights. Defaults to
      "glorot_uniform".
    seq_axis: The axis of the input tensor where we add the embeddings.

  Reference: This layer creates a positional embedding as described in
  [BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding](https://arxiv.org/abs/1810.04805).
  """

  def __init__(self,
               max_length,
               initializer="glorot_uniform",
               seq_axis=1,
               **kwargs):

    super().__init__(**kwargs)
    if max_length is None:
      raise ValueError(
          "`max_length` must be an Integer, not `None`."
      )
    self._max_length = max_length
    self._initializer = tf_keras.initializers.get(initializer)
    self._seq_axis = seq_axis

  def get_config(self):
    config = {
        "max_length": self._max_length,
        "initializer": tf_keras.initializers.serialize(self._initializer),
        "seq_axis": self._seq_axis,
    }
    base_config = super(PositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):
    dimension_list = input_shape
    width = dimension_list[-1]
    weight_sequence_length = self._max_length

    self._position_embeddings = self.add_weight(
        "embeddings",
        shape=[weight_sequence_length, width],
        initializer=self._initializer)

    super().build(input_shape)

  def call(self, inputs):
    input_shape = tf.shape(inputs)
    actual_seq_len = input_shape[self._seq_axis]
    position_embeddings = self._position_embeddings[:actual_seq_len, :]
    new_shape = [1 for _ in inputs.get_shape().as_list()]
    new_shape[self._seq_axis] = actual_seq_len
    new_shape[-1] = position_embeddings.get_shape().as_list()[-1]
    position_embeddings = tf.reshape(position_embeddings, new_shape)
    return tf.broadcast_to(position_embeddings, input_shape)


@tf_keras.utils.register_keras_serializable(package="Text")
class RelativePositionEmbedding(tf_keras.layers.Layer):
  """Creates a positional embedding.

  This layer calculates the position encoding as a mix of sine and cosine
  functions with geometrically increasing wavelengths. Defined and formulized in
   "Attention is All You Need", section 3.5.
  (https://arxiv.org/abs/1706.03762).

  Args:
    hidden_size: Size of the hidden layer.
    min_timescale: Minimum scale that will be applied at each position
    max_timescale: Maximum scale that will be applied at each position.
  """

  def __init__(self,
               hidden_size: int,
               min_timescale: float = 1.0,
               max_timescale: float = 1.0e4,
               **kwargs):
    # We need to have a default dtype of float32, since the inputs (which Keras
    # usually uses to infer the dtype) will always be int32.
    # We compute the positional encoding in float32 even if the model uses
    # float16, as many of the ops used, like log and exp, are numerically
    # unstable in float16.
    if "dtype" not in kwargs:
      kwargs["dtype"] = "float32"

    super().__init__(**kwargs)
    self._hidden_size = hidden_size
    self._min_timescale = min_timescale
    self._max_timescale = max_timescale

  def get_config(self):
    config = {
        "hidden_size": self._hidden_size,
        "min_timescale": self._min_timescale,
        "max_timescale": self._max_timescale,
    }
    base_config = super(RelativePositionEmbedding, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, length=None):
    """Implements call() for the layer.

    Args:
      inputs: An tensor whose second dimension will be used as `length`. If
        `None`, the other `length` argument must be specified.
      length: An optional integer specifying the number of positions. If both
        `inputs` and `length` are spcified, `length` must be equal to the second
        dimension of `inputs`.

    Returns:
      A tensor in shape of `(length, hidden_size)`.
    """
    if inputs is None and length is None:
      raise ValueError("If inputs is None, `length` must be set in "
                       "RelativePositionEmbedding().")
    if inputs is not None:
      input_shape = tf_utils.get_shape_list(inputs)
      if length is not None and length != input_shape[1]:
        raise ValueError(
            "If inputs is not None, `length` must equal to input_shape[1].")
      length = input_shape[1]
    position = tf.cast(tf.range(length), tf.float32)
    num_timescales = self._hidden_size // 2
    min_timescale, max_timescale = self._min_timescale, self._max_timescale
    log_timescale_increment = (
        math.log(float(max_timescale) / float(min_timescale)) /
        (tf.cast(num_timescales, tf.float32) - 1))
    inv_timescales = min_timescale * tf.exp(
        tf.cast(tf.range(num_timescales), tf.float32) *
        -log_timescale_increment)
    scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(
        inv_timescales, 0)
    position_embeddings = tf.concat(
        [tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
    return position_embeddings


def _relative_position_bucket(relative_position,
                              bidirectional=True,
                              num_buckets=32,
                              max_distance=128):
  """Translate relative position to a bucket number for relative attention.

  The relative position is defined as memory_position - query_position, i.e.
  the distance in tokens from the attending position to the attended-to
  position.

  If `bidirectional=False`, then positive relative positions are invalid.

  We use smaller buckets for small absolute relative_position and larger
  buckets for larger absolute relative_positions.

  All relative positions >=max_distance map to the same bucket.

  All relative positions <=-max_distance map to the same bucket.

  This should allow for more graceful generalization to longer sequences
  than the model has been trained on.

  Args:
    relative_position: An int32 Tensor
    bidirectional: A boolean - whether the attention is bidirectional
    num_buckets: An integer
    max_distance: An integer

  Returns:
    A Tensor with the same shape as relative_position, containing int32
    values in the range [0, num_buckets)
  """
  ret = 0
  n = -relative_position
  if bidirectional:
    num_buckets //= 2
    ret += tf.cast(tf.math.less(n, 0), tf.int32) * num_buckets
    n = tf.math.abs(n)
  else:
    n = tf.math.maximum(n, 0)
  # now n is in the range [0, inf)
  max_exact = num_buckets // 2
  is_small = tf.math.less(n, max_exact)
  val_if_large = max_exact + tf.dtypes.cast(
      tf.math.log(tf.cast(n, tf.float32) / max_exact) /
      math.log(max_distance / max_exact) * (num_buckets - max_exact),
      tf.int32,
  )
  val_if_large = tf.math.minimum(val_if_large, num_buckets - 1)
  ret += tf.where(is_small, n, val_if_large)
  return ret


@tf_keras.utils.register_keras_serializable(package="Text")
class RelativePositionBias(tf_keras.layers.Layer):
  """Relative position embedding via per-head bias in T5 style.

  Reference implementation in MeshTF:
  https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L1000

  This layer implements the relative position bias used in "Exploring the Limits
  of Transfer Learning with a Unified Text-to-Text Transformer"
  (https://arxiv.org/abs/1910.10683)
  """

  def __init__(self,
               num_heads: int,
               relative_attention_num_buckets: int = 32,
               relative_attention_max_distance: int = 128,
               bidirectional: bool = True,
               embeddings_initializer: Optional[Initializer] = None,
               **kwargs):
    super().__init__(**kwargs)
    self.num_heads = num_heads
    self.relative_attention_num_buckets = relative_attention_num_buckets
    self.bidirectional = bidirectional
    self.relative_attention_max_distance = relative_attention_max_distance
    if embeddings_initializer:
      self._embed_init = embeddings_initializer
    else:
      self._embed_init = tf_keras.initializers.TruncatedNormal(stddev=1.0)
    with tf.name_scope(self.name):
      self._relative_attention_bias = self.add_weight(
          "rel_embedding",
          shape=[self.relative_attention_num_buckets, self.num_heads],
          initializer=self._embed_init,
          dtype=self.dtype,
          trainable=True)

  def get_config(self):
    config = {
        "num_heads":
            self.num_heads,
        "relative_attention_num_buckets":
            self.relative_attention_num_buckets,
        "relative_attention_max_distance":
            self.relative_attention_max_distance,
        "bidirectional":
            self.bidirectional,
        "embeddings_initializer":
            tf_keras.initializers.serialize(self._embed_init),
    }
    base_config = super().get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, query: tf.Tensor, key: tf.Tensor):
    """Implements the forward pass.

    Args:
      query: query input tensor shape [batch, query length, hidden size].
      key: key input tensor shape [batch, key length, hidden size].

    Returns:
      A tensor in shape of [batch, heads, query length, key length].
    """
    batch_size, qlen = tf_utils.get_shape_list(query)[:2]
    klen = tf_utils.get_shape_list(key)[1]
    context_position = tf.range(qlen)[:, None]
    memory_position = tf.range(klen)[None, :]
    relative_position = memory_position - context_position
    rp_bucket = _relative_position_bucket(
        relative_position,
        bidirectional=self.bidirectional,
        num_buckets=self.relative_attention_num_buckets,
        max_distance=self.relative_attention_max_distance)
    values = tf.nn.embedding_lookup(self._relative_attention_bias, rp_bucket)
    values = tf.expand_dims(
        tf.transpose(values, [2, 0, 1]),
        axis=0)  # shape (1, num_heads, qlen, klen)
    values = tf.tile(values, [batch_size, 1, 1, 1])
    return values