Spaces:
Runtime error
Runtime error
File size: 20,557 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based relative attention layers."""
import math
import string
import tensorflow as tf, tf_keras
_CHR_IDX = string.ascii_lowercase
def _build_proj_equation(free_dims, bound_dims, output_dims):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str = ""
kernel_str = ""
output_str = ""
bias_axes = ""
letter_offset = 0
for i in range(free_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
output_str += char
letter_offset += free_dims
for i in range(bound_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
kernel_str += char
letter_offset += bound_dims
for i in range(output_dims):
char = _CHR_IDX[i + letter_offset]
kernel_str += char
output_str += char
bias_axes += char
equation = "%s,%s->%s" % (input_str, kernel_str, output_str)
return equation, bias_axes, len(output_str)
def _get_output_shape(output_rank, known_last_dims):
return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
def _rel_shift(x, klen=-1):
"""Performs relative shift to form the relative attention score."""
x = tf.transpose(x, perm=[2, 3, 0, 1])
x_size = tf.shape(x)
x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])
x = tf.transpose(x, perm=[2, 3, 0, 1])
return x
@tf_keras.utils.register_keras_serializable(package="Text")
class MultiHeadRelativeAttention(tf_keras.layers.MultiHeadAttention):
"""A multi-head attention layer with relative attention + position encoding.
This layer shares the same input/output projections as the common
`tf_keras.layers.MultiHeadAttention` layer.
When it calculates attention logits, position encoding is projected to form
relative keys. The logits are composed by shifted relative logits and content
logits.
**Note: This layer is currently experimental.
Attributes:
kernel_initializer: The kernel initializer. Defaults to variance_scaling.
Call args:
query: Query `Tensor` of shape `[B, T, dim]`.
value: Value `Tensor` of shape `[B, S, dim]`.
content_attention_bias: Bias `Tensor` for content based attention of shape
`[num_heads, dim]`.
positional_attention_bias: Bias `Tensor` for position based attention of
shape `[num_heads, dim]`.
key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will use
`value` for both `key` and `value`, which is the most common case.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet of shape `[B, S, S + M]`.
segment_encoding: Optional `Tensor` representing the segmentation encoding
as used in XLNet of shape `[2, num_heads, dim]`.
segment_attention_bias: Optional trainable bias parameter added to the query
had when calculating the segment-based attention score used in XLNet of
shape `[num_heads, dim]`.
state: Optional `Tensor` of shape `[B, M, E]` where M is the length of the
state or memory. If passed, this is also attended over as in Transformer
XL.
attention_mask: A boolean mask of shape `[B, T, S]` that prevents attention
to certain positions.
"""
def __init__(self,
kernel_initializer="variance_scaling",
**kwargs):
super().__init__(kernel_initializer=kernel_initializer,
**kwargs)
def _build_from_signature(self, query, value, key=None):
super(MultiHeadRelativeAttention, self)._build_from_signature(
query=query,
value=value,
key=key)
if hasattr(value, "shape"):
value_shape = tf.TensorShape(value.shape)
else:
value_shape = value
if key is None:
key_shape = value_shape
elif hasattr(key, "shape"):
key_shape = tf.TensorShape(key.shape)
else:
key_shape = key
common_kwargs = dict(
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
with tf.init_scope():
einsum_equation, _, output_rank = _build_proj_equation(
key_shape.rank - 1, bound_dims=1, output_dims=2)
self._encoding_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1,
[self._num_heads, self._key_dim]),
bias_axes=None,
name="encoding",
**common_kwargs)
def compute_attention(self,
query,
key,
value,
position,
content_attention_bias,
positional_attention_bias,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
attention_mask=None):
"""Computes the attention.
This function defines the computation inside `call` with projected
multihead Q, K, V, R inputs.
Args:
query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
key: Projected key `Tensor` of shape `[B, S + M, N, key_dim]`.
value: Projected value `Tensor` of shape `[B, S + M, N, key_dim]`.
position: Projected position `Tensor` of shape `[B, L, N, key_dim]`.
content_attention_bias: Trainable bias parameter added to the query head
when calculating the content-based attention score.
positional_attention_bias: Trainable bias parameter added to the query
head when calculating the position-based attention score.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional trainable `Tensor` representing the
segmentation encoding as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: Multi-headed output of attention computation of shape
`[B, S, N, key_dim]`.
"""
content_attention = tf.einsum(self._dot_product_equation,
key,
query + content_attention_bias)
positional_attention = tf.einsum(self._dot_product_equation,
position,
query + positional_attention_bias)
positional_attention = _rel_shift(
positional_attention, klen=tf.shape(content_attention)[3])
if segment_matrix is not None:
segment_attention = tf.einsum("bind,snd->bnis",
query + segment_attention_bias,
segment_encoding)
target_shape = tf.shape(positional_attention)
segment_attention = tf.where(
tf.broadcast_to(tf.expand_dims(segment_matrix, 1), target_shape),
tf.broadcast_to(segment_attention[:, :, :, 1:], target_shape),
tf.broadcast_to(segment_attention[:, :, :, :1], target_shape))
attention_sum = (
content_attention + positional_attention + segment_attention)
else:
attention_sum = content_attention + positional_attention
attention_scores = tf.multiply(
attention_sum, 1.0 / math.sqrt(float(self._key_dim)))
attention_scores = self._masked_softmax(attention_scores, attention_mask)
attention_output = self._dropout_layer(attention_scores)
attention_output = tf.einsum(self._combine_equation,
attention_output,
value)
return attention_output
def call(self, # pytype: disable=signature-mismatch # overriding-parameter-count-checks
query,
value,
content_attention_bias,
positional_attention_bias,
key=None,
relative_position_encoding=None,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
state=None,
attention_mask=None):
"""Compute multi-head relative attention over inputs.
Size glossary:
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Batch dimensions (B).
* Query (target) attention axes shape (T).
* Value (source) attention axes shape (S), the rank must match the target.
* Encoding length (L): The relative positional encoding length.
Args:
query: attention input.
value: attention input.
content_attention_bias: A trainable bias parameter added to the query head
when calculating the content-based attention score.
positional_attention_bias: A trainable bias parameter added to the query
head when calculating the position-based attention score.
key: attention input.
relative_position_encoding: relative positional encoding for key and
value.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional `Tensor` representing the segmentation encoding
as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet.
state: (default None) optional state. If passed, this is also attended
over as in TransformerXL.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: The result of the computation, of shape [B, T, E],
where `T` is for target sequence shapes and `E` is the query input last
dimension if `output_shape` is `None`. Otherwise, the multi-head outputs
are projected to the shape specified by `output_shape`.
"""
if not self._built_from_signature:
self._build_from_signature(query, value, key=key)
if key is None:
key = value
if state is not None and state.shape.ndims > 1:
value = tf.concat([state, value], 1)
key = tf.concat([state, key], 1)
# `query` = [B, T, N ,H]
query = self._query_dense(query)
# `key` = [B, S + M, N, H]
key = self._key_dense(key)
# `value` = [B, S + M, N, H]
value = self._value_dense(value)
# `position` = [B, L, N, H]
position = self._encoding_dense(relative_position_encoding)
attention_output = self.compute_attention(
query=query,
key=key,
value=value,
position=position,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
attention_mask=attention_mask)
# `attention_output` = [B, S, N, H]
attention_output = self._output_dense(attention_output)
return attention_output
@tf_keras.utils.register_keras_serializable(package="Text")
class TwoStreamRelativeAttention(MultiHeadRelativeAttention):
"""Two-stream relative self-attention for XLNet.
In XLNet, each token has two associated vectors at each self-attention layer,
the content stream (h) and the query stream (g).
The content stream is the self-attention stream as in Transformer XL and
represents the context and content (the token itself).
The query stream only has access to contextual information and the position,
but not the content.
This layer shares the same build signature as
`tf_keras.layers.MultiHeadAttention` but has different input/output
projections.
**Note: This layer is currently experimental.
Call args:
content_stream: `Tensor` of shape `[B, T, dim]`.
content_attention_bias: Bias `Tensor` for content based attention of shape
`[num_heads, dim]`.
positional_attention_bias: Bias `Tensor` for position based attention of
shape `[num_heads, dim]`.
query_stream: `Tensor` of shape `[B, P, dim]`.
target_mapping: `Tensor` of shape `[B, P, S]`.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet of shape `[B, S, S + M]`.
segment_encoding: Optional `Tensor` representing the segmentation
encoding as used in XLNet of shape `[2, num_heads, dim]`.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet of shape `[num_heads, dim]`.
state: Optional `Tensor` of shape [B, M, E] where M is the length of the
state or memory.
If passed, this is also attended over as in Transformer XL.
content_attention_mask: a boolean mask of shape `[B, T, S]` that
prevents attention to certain positions for content attention computation.
query_attention_mask: a boolean mask of shape `[B, T, S]` that
prevents attention to certain position for query attention computation.
"""
def call(self,
content_stream,
content_attention_bias,
positional_attention_bias,
query_stream,
relative_position_encoding,
target_mapping=None,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
state=None,
content_attention_mask=None,
query_attention_mask=None):
"""Compute multi-head relative attention over inputs.
Size glossary:
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Number of predictions (P): the number of predictions.
* Batch dimensions (B).
* Query (target) attention axes shape (T).
* Value (source) attention axes shape (S), the rank must match the target.
* Encoding length (L): The relative positional encoding length.
Args:
content_stream: The content representation, commonly referred to as h.
This serves a similar role to the standard hidden states in
Transformer-XL.
content_attention_bias: A trainable bias parameter added to the query head
when calculating the content-based attention score.
positional_attention_bias: A trainable bias parameter added to the query
head when calculating the position-based attention score.
query_stream: The query representation, commonly referred to as g. This
only has access to contextual information and position, but not content.
If not provided, then this is MultiHeadRelativeAttention with
self-attention.
relative_position_encoding: relative positional encoding for key and
value.
target_mapping: Optional `Tensor` representing the target mapping used in
partial prediction.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional `Tensor` representing the segmentation encoding
as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query head when calculating the segment-based attention score.
state: (default None) optional state. If passed, this is also attended
over as in TransformerXL and XLNet.
content_attention_mask: (default None) Optional mask that is added to
content attention logits. If state is not None, the mask source sequence
dimension should extend M.
query_attention_mask: (default None) Optional mask that is added to query
attention logits. If state is not None, the mask source sequence
dimension should extend M.
Returns:
content_attention_output, query_attention_output: the results of the
computation, both of shape [B, T, E]. `T` is for target sequence shapes,
`E` is the query input last dimension if `output_shape` is `None`.
Otherwise, the multi-head outputs are projected to the shape specified
by `output_shape`.
"""
if not self._built_from_signature:
self._build_from_signature(content_stream, content_stream, content_stream)
if state is not None and state.shape.ndims > 1:
content_and_memory_stream = tf.concat([state, content_stream], 1)
else:
content_and_memory_stream = content_stream
# `query` = [B, T, N, H]
query = self._query_dense(content_stream)
# `key` = [B, S + M, N, H]
key = self._key_dense(content_and_memory_stream)
# `value` = [B, S + M, N, H]
value = self._value_dense(content_and_memory_stream)
# `position` = [B, L, N, H]
position = self._encoding_dense(relative_position_encoding)
content_attention_output = self.compute_attention(
query=query,
key=key,
value=value,
position=position,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
attention_mask=content_attention_mask)
# `content_attention_output` = [B, S, N, H]
content_attention_output = self._output_dense(content_attention_output)
query_attention_output = None
if query_stream is not None:
query = self._query_dense(query_stream)
if target_mapping is not None:
query = tf.einsum("bmnd,bml->blnd", query, target_mapping)
query_attention_output = self.compute_attention(
query=query,
key=key,
value=value,
position=position,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
attention_mask=query_attention_mask)
query_attention_output = tf.einsum("blnd,bml->bmnd",
query_attention_output,
target_mapping)
else:
query_attention_output = self.compute_attention(
query=query,
key=key,
value=value,
position=position,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
attention_mask=query_attention_mask)
query_attention_output = self._output_dense(query_attention_output)
return content_attention_output, query_attention_output
|