Spaces:
Runtime error
Runtime error
File size: 25,668 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Keras-based attention layer."""
# pylint: disable=g-classes-have-attributes
import collections
import math
import string
import numpy as np
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
_CHR_IDX = string.ascii_lowercase
def _build_attention_equation(rank, attn_axes):
"""Builds einsum equations for the attention computation.
Query, key, value inputs after projection are expected to have the shape as:
`(bs, <non-attention dims>, <attention dims>, num_heads, channels)`.
`bs` and `<non-attention dims>` are treated as `<batch dims>`.
The attention operations can be generalized:
(1) Query-key dot product:
`(<batch dims>, <query attention dims>, num_heads, channels), (<batch dims>,
<key attention dims>, num_heads, channels) -> (<batch dims>,
num_heads, <query attention dims>, <key attention dims>)`
(2) Combination:
`(<batch dims>, num_heads, <query attention dims>, <key attention dims>),
(<batch dims>, <value attention dims>, num_heads, channels) -> (<batch dims>,
<query attention dims>, num_heads, channels)`
Args:
rank: Rank of query, key, value tensors.
attn_axes: List/tuple of axes, `[-1, rank)`,
that attention will be applied to.
Returns:
Einsum equations.
"""
target_notation = _CHR_IDX[:rank]
# `batch_dims` includes the head dim.
batch_dims = tuple(np.delete(range(rank), attn_axes + (rank - 1,)))
letter_offset = rank
source_notation = ""
for i in range(rank):
if i in batch_dims or i == rank - 1:
source_notation += target_notation[i]
else:
source_notation += _CHR_IDX[letter_offset]
letter_offset += 1
product_notation = "".join([target_notation[i] for i in batch_dims] +
[target_notation[i] for i in attn_axes] +
[source_notation[i] for i in attn_axes])
dot_product_equation = "%s,%s->%s" % (source_notation, target_notation,
product_notation)
attn_scores_rank = len(product_notation)
combine_equation = "%s,%s->%s" % (product_notation, source_notation,
target_notation)
return dot_product_equation, combine_equation, attn_scores_rank
def _build_proj_equation(free_dims, bound_dims, output_dims):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str = ""
kernel_str = ""
output_str = ""
bias_axes = ""
letter_offset = 0
for i in range(free_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
output_str += char
letter_offset += free_dims
for i in range(bound_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
kernel_str += char
letter_offset += bound_dims
for i in range(output_dims):
char = _CHR_IDX[i + letter_offset]
kernel_str += char
output_str += char
bias_axes += char
equation = "%s,%s->%s" % (input_str, kernel_str, output_str)
return equation, bias_axes, len(output_str)
def _get_output_shape(output_rank, known_last_dims):
return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
class ReuseMultiHeadAttention(tf_keras.layers.Layer):
"""MultiHeadAttention layer.
This is an implementation of multi-headed attention as described in the paper
"Attention is all you Need" (Vaswani et al., 2017).
If `query`, `key,` `value` are the same, then
this is self-attention. Each timestep in `query` attends to the
corresponding sequence in `key`, and returns a fixed-width vector.
This layer first projects `query`, `key` and `value`. These are
(effectively) a list of tensors of length `num_attention_heads`, where the
corresponding shapes are `(batch_size, <query dimensions>, key_dim)`,
`(batch_size, <key/value dimensions>, key_dim)`,
`(batch_size, <key/value dimensions>, value_dim)`.
Then, the query and key tensors are dot-producted and scaled. These are
softmaxed to obtain attention probabilities. The value tensors are then
interpolated by these probabilities, then concatenated back to a single
tensor.
Finally, the result tensor with the last dimension as value_dim can take an
linear projection and return.
Examples:
Performs 1D cross-attention over two sequence inputs with an attention mask.
Returns the additional attention weights over heads.
>>> layer = MultiHeadAttention(num_heads=2, key_dim=2)
>>> target = tf_keras.Input(shape=[8, 16])
>>> source = tf_keras.Input(shape=[4, 16])
>>> output_tensor, weights = layer(target, source,
... return_attention_scores=True)
>>> print(output_tensor.shape)
(None, 8, 16)
>>> print(weights.shape)
(None, 2, 8, 4)
Performs 2D self-attention over a 5D input tensor on axes 2 and 3.
>>> layer = MultiHeadAttention(num_heads=2, key_dim=2, attention_axes=(2, 3))
>>> input_tensor = tf_keras.Input(shape=[5, 3, 4, 16])
>>> output_tensor = layer(input_tensor, input_tensor)
>>> print(output_tensor.shape)
(None, 5, 3, 4, 16)
Args:
num_heads: Number of attention heads.
key_dim: Size of each attention head for query and key.
value_dim: Size of each attention head for value.
dropout: Dropout probability.
reuse_attention: An integer specifying number of heads to reuse.
-1 for all heads.
use_relative_pe: Whether to use relative position bias.
max_sequence_length: Used to set the size of the relative positin encodings.
use_bias: Boolean, whether the dense layers use bias vectors/matrices.
output_shape: The expected shape of an output tensor, besides the batch and
sequence dims. If not specified, projects back to the key feature dim.
attention_axes: axes over which the attention is applied. `None` means
attention over all axes, but batch, heads, and features.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
Call arguments:
query: Query `Tensor` of shape `(B, T, dim)`.
value: Value `Tensor` of shape `(B, S, dim)`.
key: Optional key `Tensor` of shape `(B, S, dim)`. If not given, will use
`value` for both `key` and `value`, which is the most common case.
attention_mask: a boolean mask of shape `(B, T, S)`, that prevents
attention to certain positions. The boolean mask specifies which query
elements can attend to which key elements, 1 indicates attention and 0
indicates no attention. Broadcasting can happen for the missing batch
dimensions and the head dimension.
return_attention_scores: A boolean to indicate whether the output should
be attention output if True, or (attention_output, attention_scores) if
False. Defaults to False.
training: Python boolean indicating whether the layer should behave in
training mode (adding dropout) or in inference mode (no dropout).
Defaults to either using the training mode of the parent layer/model,
or False (inference) if there is no parent layer.
Returns:
attention_output: The result of the computation, of shape `(B, T, E)`,
where `T` is for target sequence shapes and `E` is the query input last
dimension if `output_shape` is `None`. Otherwise, the multi-head outputs
are project to the shape specified by `output_shape`.
attention_scores: [Optional] multi-head attention coeffients over
attention axes.
"""
def __init__(self,
num_heads,
key_dim,
value_dim=None,
dropout=0.0,
reuse_attention=0,
use_relative_pe=False,
pe_max_seq_length=512,
use_bias=True,
output_shape=None,
attention_axes=None,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super().__init__(**kwargs)
self._num_heads = num_heads
self._key_dim = key_dim
self._value_dim = value_dim if value_dim else key_dim
self._dropout = dropout
if reuse_attention > self._num_heads or reuse_attention < -1:
raise ValueError("reuse_attention should be between -1 "
"and %d in call to %s." % (self.__class__,
self._num_heads))
if reuse_attention == -1:
reuse_attention = self._num_heads
self._reuse_heads = reuse_attention
self._use_relative_pe = use_relative_pe
self._pe_max_seq_length = pe_max_seq_length
self._use_bias = use_bias
self._output_shape = output_shape
self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self._bias_initializer = tf_keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf_keras.regularizers.get(bias_regularizer)
self._kernel_constraint = tf_keras.constraints.get(kernel_constraint)
self._bias_constraint = tf_keras.constraints.get(bias_constraint)
if attention_axes is not None and not isinstance(attention_axes,
collections.abc.Sized):
self._attention_axes = (attention_axes,)
else:
self._attention_axes = attention_axes
self._built_from_signature = False
self._query_shape, self._key_shape, self._value_shape = None, None, None
# Use relative PE only if reuse_heads < num_heads.
if self._use_relative_pe and self._reuse_heads < self._num_heads:
# Determine the dtype from global policy.
policy = tf_keras.mixed_precision.global_policy()
if policy.name == "mixed_bfloat16":
policy = tf.bfloat16
elif policy.name == "mixed_float16":
policy = tf.float16
else:
policy = tf.float32
self._position_embeddings = tf.Variable(
name="relative_position_embeddings",
initial_value=lambda: tf.random.truncated_normal( # pylint: disable=g-long-lambda
[
1, self._num_heads - self._reuse_heads, 2 * self.
_pe_max_seq_length - 1
], mean=0.0, stddev=0.2, dtype=policy),
trainable=True, dtype=policy)
def get_config(self):
config = {
"num_heads": self._num_heads,
"key_dim": self._key_dim,
"value_dim": self._value_dim,
"dropout": self._dropout,
"use_bias": self._use_bias,
"output_shape": self._output_shape,
"attention_axes": self._attention_axes,
"reuse_attention": self._reuse_heads,
"use_relative_pe": self._use_relative_pe,
"pe_max_seq_length": self._pe_max_seq_length,
"kernel_initializer":
tf_keras.initializers.serialize(self._kernel_initializer),
"bias_initializer":
tf_keras.initializers.serialize(self._bias_initializer),
"kernel_regularizer":
tf_keras.regularizers.serialize(self._kernel_regularizer),
"bias_regularizer":
tf_keras.regularizers.serialize(self._bias_regularizer),
"activity_regularizer":
tf_keras.regularizers.serialize(self._activity_regularizer),
"kernel_constraint":
tf_keras.constraints.serialize(self._kernel_constraint),
"bias_constraint":
tf_keras.constraints.serialize(self._bias_constraint),
"query_shape": self._query_shape,
"key_shape": self._key_shape,
"value_shape": self._value_shape,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@classmethod
def from_config(cls, config):
# If the layer has a different build() function from the Keras default,
# we need to trigger the customized build to create weights.
query_shape = config.pop("query_shape")
key_shape = config.pop("key_shape")
value_shape = config.pop("value_shape")
layer = cls(**config)
if None in [query_shape, key_shape, value_shape]:
tf.get_logger().warning(
"One of dimensions of the input shape is missing. It should have been"
" memorized when the layer was serialized. "
"%s is created without weights.",
str(cls))
else:
layer._build_from_signature(query_shape, value_shape, key_shape) # pylint: disable=protected-access
return layer
def _build_from_signature(self, query, value, key=None):
"""Builds layers and variables.
Once the method is called, self._built_from_signature will be set to True.
Args:
query: Query tensor or TensorShape.
value: Value tensor or TensorShape.
key: Key tensor or TensorShape.
"""
self._built_from_signature = True
if hasattr(query, "shape"):
self._query_shape = tf.TensorShape(query.shape)
else:
self._query_shape = tf.TensorShape(query)
if hasattr(value, "shape"):
self._value_shape = tf.TensorShape(value.shape)
else:
self._value_shape = tf.TensorShape(value)
if key is None:
self._key_shape = self._value_shape
elif hasattr(key, "shape"):
self._key_shape = tf.TensorShape(key.shape)
else:
self._key_shape = tf.TensorShape(key)
common_kwargs = dict(
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
# Any setup work performed only once should happen in an `init_scope`
# to avoid creating symbolic Tensors that will later pollute any eager
# operations.
with tf.init_scope():
free_dims = self._query_shape.rank - 1
if self._reuse_heads < self._num_heads:
einsum_equation, bias_axes, output_rank = _build_proj_equation(
free_dims, bound_dims=1, output_dims=2)
self._query_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(
output_rank - 1,
[self._num_heads - self._reuse_heads, self._key_dim]),
bias_axes=bias_axes if self._use_bias else None,
name="query",
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
einsum_equation, bias_axes, output_rank = _build_proj_equation(
self._key_shape.rank - 1, bound_dims=1, output_dims=2)
self._key_dense = tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(
output_rank - 1,
[self._num_heads - self._reuse_heads, self._key_dim]),
bias_axes=bias_axes if self._use_bias else None,
name="key",
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
einsum_equation, bias_axes, output_rank = _build_proj_equation(
self._value_shape.rank - 1, bound_dims=1, output_dims=2)
self._value_dense = []
if self._reuse_heads > 0:
self._value_dense.append(
tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(
output_rank - 1, [self._reuse_heads, self._value_dim]),
bias_axes=bias_axes if self._use_bias else None,
name="value_reuse",
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(
self._bias_initializer),
**common_kwargs))
if self._reuse_heads < self._num_heads:
self._value_dense.append(
tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(
output_rank - 1,
[self._num_heads - self._reuse_heads, self._value_dim]),
bias_axes=bias_axes if self._use_bias else None,
name="value_new",
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(
self._bias_initializer),
**common_kwargs))
# Builds the attention computations for multi-head dot product attention.
# These computations could be wrapped into the keras attention layer once
# it support mult-head einsum computations.
self._build_attention(output_rank)
self._output_dense = []
if self._reuse_heads > 0:
self._output_dense.append(self._make_output_dense(
free_dims, common_kwargs, "attention_output_reuse"))
if self._reuse_heads < self._num_heads:
self._output_dense.append(self._make_output_dense(
free_dims, common_kwargs, "attention_output_new",
self._reuse_heads == 0))
def _make_output_dense(self, free_dims, common_kwargs, name=None,
use_bias=True):
"""Builds the output projection matrix.
Args:
free_dims: Number of free dimensions for einsum equation building.
common_kwargs: Common keyword arguments for einsum layer.
name: Name for the projection layer.
use_bias: Use bias if self._use_bias is true
Returns:
Projection layer.
"""
if self._output_shape:
if not isinstance(self._output_shape, collections.abc.Sized):
output_shape = [self._output_shape]
else:
output_shape = self._output_shape
else:
output_shape = [self._query_shape[-1]]
einsum_equation, bias_axes, output_rank = _build_proj_equation(
free_dims, bound_dims=2, output_dims=len(output_shape))
return tf_keras.layers.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1, output_shape),
bias_axes=bias_axes if (use_bias and self._use_bias) else None,
name=name,
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs)
def _build_attention(self, rank):
"""Builds multi-head dot-product attention computations.
This function builds attributes necessary for `_compute_attention` to
customize attention computation to replace the default dot-product
attention.
Args:
rank: the rank of query, key, value tensors.
"""
if self._attention_axes is None:
self._attention_axes = tuple(range(1, rank - 2))
else:
self._attention_axes = tuple(self._attention_axes)
self._dot_product_equation, self._combine_equation, attn_scores_rank = (
_build_attention_equation(rank, attn_axes=self._attention_axes))
norm_axes = tuple(
range(attn_scores_rank - len(self._attention_axes), attn_scores_rank))
self._softmax = tf_keras.layers.Softmax(axis=norm_axes)
self._dropout_layer = tf_keras.layers.Dropout(rate=self._dropout)
def _masked_softmax(self, attention_scores, attention_mask=None):
# Normalize the attention scores to probabilities.
# `attention_scores` = [B, N, T, S]
if attention_mask is not None:
# The expand dim happens starting from the `num_heads` dimension,
# (<batch_dims>, num_heads, <query_attention_dims, key_attention_dims>)
mask_expansion_axes = [-len(self._attention_axes) * 2 - 1]
for _ in range(len(attention_scores.shape) - len(attention_mask.shape)):
attention_mask = tf.expand_dims(
attention_mask, axis=mask_expansion_axes)
return self._softmax(attention_scores, attention_mask)
def _compute_relative_position(self, query_seq_length, key_seq_length):
position_zero = self._pe_max_seq_length - 1
# We take the vector position variable and concatenate to form a matrix of
# relative position encodings. i=0 indicates reltaive position is 0.
indices = tf.expand_dims(tf.range(0, -query_seq_length, -1),
-1) + tf.range(key_seq_length) + position_zero
indices = tf.maximum(indices, 0)
indices = tf.minimum(indices, 2*self._pe_max_seq_length-2)
attention_biases = tf.gather(self._position_embeddings, indices, axis=2)
return attention_biases
def _compute_attention(self,
query,
key,
value,
reuse_scores=None,
attention_mask=None,
training=None):
"""Applies Dot-product attention with query, key, value tensors.
This function defines the computation inside `call` with projected
multi-head Q, K, V inputs. Users can override this function for customized
attention implementation.
Args:
query: Projected query `Tensor` of shape `(B, T, N, key_dim)`.
key: Projected key `Tensor` of shape `(B, T, N, key_dim)`.
value: Projected value `Tensor` of shape `(B, T, N, value_dim)`.
reuse_scores: Attention scores from a previous layer if needed.
attention_mask: a boolean mask of shape `(B, T, S)`, that prevents
attention to certain positions.
training: Python boolean indicating whether the layer should behave in
training mode (adding dropout) or in inference mode (doing nothing).
Returns:
attention_output: Multi-headed outputs of attention computation.
attention_scores: Multi-headed attention weights.
"""
# Partial or no reuse
if self._reuse_heads < self._num_heads:
query = tf.multiply(query, 1.0 / math.sqrt(float(self._key_dim)))
new_scores = tf.einsum(self._dot_product_equation, key, query)
# Add relative position embeddings if required.
if self._use_relative_pe:
new_scores = new_scores + self._compute_relative_position(
tf.shape(query)[1], tf.shape(key)[1])
new_scores = self._masked_softmax(new_scores, attention_mask)
if self._reuse_heads > 0: # Partial reuse
reuse_scores = reuse_scores[:, :self._reuse_heads, :, :]
attention_scores = tf.concat([new_scores, reuse_scores], 1)
else: # No reuse
attention_scores = new_scores
else: # Full reuse
attention_scores = reuse_scores
new_scores = None
# `context_layer` = [B, T, N, H]
attention_output = []
# Partial or full reuse
if self._reuse_heads > 0:
attention_output.append(
tf.einsum(self._combine_equation, self._dropout_layer(
reuse_scores, training=training), value[0]))
# Partial or no reuse
if self._reuse_heads < self._num_heads:
attention_output.append(
tf.einsum(self._combine_equation, self._dropout_layer(
new_scores, training=training), value[-1]))
return attention_output, attention_scores
def call(self,
query,
value,
key=None,
attention_mask=None,
return_attention_scores=False,
training=None,
reuse_attention_scores=None):
if self._reuse_heads > 0 and reuse_attention_scores is None:
raise ValueError("reuse_attention_scores cannot be None when "
"reuse_attention is True or > 0.")
if not self._built_from_signature:
self._build_from_signature(query=query, value=value, key=key)
if key is None:
key = value
# N = `num_attention_heads`
# H = `size_per_head`
# `value` = [B, S, N, H]
value = [vd(value) for vd in self._value_dense]
if self._reuse_heads < self._num_heads:
# `query` = [B, T, N ,H]
query = self._query_dense(query)
# `key` = [B, S, N, H]
key = self._key_dense(key)
else:
query, key = None, None
attention_output, attention_scores = self._compute_attention(
query, key, value, reuse_attention_scores, attention_mask, training)
attention_output = [od(attention_output[i]) for i, od in enumerate(
self._output_dense)]
if len(attention_output) == 1:
attention_output = attention_output[0]
else:
attention_output = attention_output[0] + attention_output[1]
if return_attention_scores:
return attention_output, attention_scores
return attention_output
|