File size: 14,329 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for the attention layer."""

from absl.testing import parameterized

import numpy as np
import tensorflow as tf, tf_keras

from official.nlp.modeling.layers import reuse_attention as attention


class ReuseMultiHeadAttentionTest(tf.test.TestCase, parameterized.TestCase):

  @parameterized.named_parameters(
      ("key_value_same_proj", None, None, [40, 80]),
      ("key_value_different_proj", 32, 60, [40, 60]),
  )
  def test_non_masked_attention(self, value_dim, output_shape, output_dims):
    """Test that the attention layer can be created without a mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12,
        key_dim=64,
        value_dim=value_dim,
        output_shape=output_shape)
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    value = tf_keras.Input(shape=(20, 80))
    output = test_layer(query=query, value=value)
    self.assertEqual(output.shape.as_list(), [None] + output_dims)

  def test_non_masked_self_attention(self):
    """Test with one input (self-attenntion) and no mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12, key_dim=64)
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    output = test_layer(query, query)
    self.assertEqual(output.shape.as_list(), [None, 40, 80])

  def test_attention_scores(self):
    """Test attention outputs with coefficients."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12, key_dim=64)
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    output, coef = test_layer(query, query, return_attention_scores=True)
    self.assertEqual(output.shape.as_list(), [None, 40, 80])
    self.assertEqual(coef.shape.as_list(), [None, 12, 40, 40])

  def test_attention_scores_with_values(self):
    """Test attention outputs with coefficients."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12, key_dim=64)
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    value = tf_keras.Input(shape=(60, 80))
    output, coef = test_layer(query, value, return_attention_scores=True)
    self.assertEqual(output.shape.as_list(), [None, 40, 80])
    self.assertEqual(coef.shape.as_list(), [None, 12, 40, 60])

  @parameterized.named_parameters(
      ("with_bias", True, 0), ("no_bias", False, 0),
      ("reuse_all_with_bias", True, -1), ("reuse_all_no_bias", False, -1),
      ("reuse_partial_with_bias", True, 1),
      ("reuse_partial_no_bias", False, 1))
  def test_masked_attention(self, use_bias, reuse_attention):
    """Test with a mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=2, key_dim=2, use_bias=use_bias,
        reuse_attention=reuse_attention)
    # Create a 3-dimensional input (the first dimension is implicit).
    batch_size = 3
    query = tf_keras.Input(shape=(4, 8))
    value = tf_keras.Input(shape=(2, 8))
    mask_tensor = tf_keras.Input(shape=(4, 2))
    reuse_attention_scores = tf_keras.Input(shape=(2, 4, 2))
    output = test_layer(query=query, value=value, attention_mask=mask_tensor,
                        reuse_attention_scores=reuse_attention_scores)
    # Create a model containing the test layer.
    model = tf_keras.Model(
        [query, value, mask_tensor, reuse_attention_scores], output)

    # Generate data for the input (non-mask) tensors.
    from_data = 10 * np.random.random_sample((batch_size, 4, 8))
    to_data = 10 * np.random.random_sample((batch_size, 2, 8))
    reuse_scores = np.random.random_sample((batch_size, 2, 4, 2))
    # Invoke the data with a random set of mask data. This should mask at least
    # one element.
    mask_data = np.random.randint(2, size=(batch_size, 4, 2))
    masked_output_data = model.predict(
        [from_data, to_data, mask_data, reuse_scores])

    # Invoke the same data, but with a null mask (where no elements are masked).
    null_mask_data = np.ones((batch_size, 4, 2))
    unmasked_output_data = model.predict(
        [from_data, to_data, null_mask_data, reuse_scores])

    # Because one data is masked and one is not, the outputs should not be the
    # same.
    if reuse_attention == -1:
      self.assertAllEqual(masked_output_data, unmasked_output_data)
    else:
      self.assertNotAllClose(masked_output_data, unmasked_output_data)

    # Tests the layer with three inputs: Q, K, V.
    key = tf_keras.Input(shape=(2, 8))
    output = test_layer(query, value=value, key=key, attention_mask=mask_tensor,
                        reuse_attention_scores=reuse_attention_scores)
    model = tf_keras.Model(
        [query, value, key, mask_tensor, reuse_attention_scores], output)

    masked_output_data = model.predict(
        [from_data, to_data, to_data, mask_data, reuse_scores])
    unmasked_output_data = model.predict(
        [from_data, to_data, to_data, null_mask_data, reuse_scores])
    # Because one data is masked and one is not, the outputs should not be the
    # same.
    if reuse_attention == -1:
      self.assertAllEqual(masked_output_data, unmasked_output_data)
    else:
      self.assertNotAllClose(masked_output_data, unmasked_output_data)
    if reuse_attention > 0:
      self.assertLen(test_layer._output_dense, 2)
    if use_bias:
      if reuse_attention == 0:
        self.assertLen(test_layer._query_dense.trainable_variables, 2)
      self.assertLen(test_layer._output_dense[0].trainable_variables, 2)
      if len(test_layer._output_dense) == 2:
        self.assertLen(test_layer._output_dense[1].trainable_variables, 1)
    else:
      if reuse_attention == 0:
        self.assertLen(test_layer._query_dense.trainable_variables, 1)
      self.assertLen(test_layer._output_dense[0].trainable_variables, 1)
      if len(test_layer._output_dense) == 2:
        self.assertLen(test_layer._output_dense[1].trainable_variables, 1)

  def test_initializer(self):
    """Test with a specified initializer."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12,
        key_dim=64,
        kernel_initializer=tf_keras.initializers.TruncatedNormal(stddev=0.02))
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    output = test_layer(query, query)
    self.assertEqual(output.shape.as_list(), [None, 40, 80])

  def test_masked_attention_with_scores(self):
    """Test with a mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=2, key_dim=2)
    # Create a 3-dimensional input (the first dimension is implicit).
    batch_size = 3
    query = tf_keras.Input(shape=(4, 8))
    value = tf_keras.Input(shape=(2, 8))
    mask_tensor = tf_keras.Input(shape=(4, 2))
    output = test_layer(query=query, value=value, attention_mask=mask_tensor)

    # Create a model containing the test layer.
    model = tf_keras.Model([query, value, mask_tensor], output)

    # Generate data for the input (non-mask) tensors.
    from_data = 10 * np.random.random_sample((batch_size, 4, 8))
    to_data = 10 * np.random.random_sample((batch_size, 2, 8))

    # Invoke the data with a random set of mask data. This should mask at least
    # one element.
    mask_data = np.random.randint(2, size=(batch_size, 4, 2))
    masked_output_data = model.predict([from_data, to_data, mask_data])

    # Invoke the same data, but with a null mask (where no elements are masked).
    null_mask_data = np.ones((batch_size, 4, 2))
    unmasked_output_data = model.predict([from_data, to_data, null_mask_data])

    # Because one data is masked and one is not, the outputs should not be the
    # same.
    self.assertNotAllClose(masked_output_data, unmasked_output_data)

    # Create a model containing attention scores.
    output, scores = test_layer(
        query=query, value=value, attention_mask=mask_tensor,
        return_attention_scores=True)
    model = tf_keras.Model([query, value, mask_tensor], [output, scores])
    masked_output_data_score, masked_score = model.predict(
        [from_data, to_data, mask_data])
    unmasked_output_data_score, unmasked_score = model.predict(
        [from_data, to_data, null_mask_data])
    self.assertNotAllClose(masked_output_data_score, unmasked_output_data_score)
    self.assertAllClose(masked_output_data, masked_output_data_score)
    self.assertAllClose(unmasked_output_data, unmasked_output_data_score)
    self.assertNotAllClose(masked_score, unmasked_score)

  @parameterized.named_parameters(
      ("4d_inputs_1freebatch_mask2", [3, 4], [3, 2], [4, 2],
       (2,)), ("4d_inputs_1freebatch_mask3", [3, 4], [3, 2], [3, 4, 2], (2,)),
      ("4d_inputs_1freebatch_mask4", [3, 4], [3, 2], [3, 2, 4, 2],
       (2,)), ("4D_inputs_2D_attention", [3, 4], [3, 2], [3, 4, 3, 2], (1, 2)),
      ("5D_inputs_2D_attention", [5, 3, 4], [5, 3, 2], [3, 4, 3, 2], (2, 3)),
      ("5D_inputs_2D_attention_fullmask", [5, 3, 4], [5, 3, 2], [5, 3, 4, 3, 2],
       (2, 3)))
  def test_high_dim_attention(self, q_dims, v_dims, mask_dims, attention_axes):
    """Test with a mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=2, key_dim=2, attention_axes=attention_axes)
    batch_size, hidden_size = 3, 8
    # Generate data for the input (non-mask) tensors.
    query_shape = [batch_size] + q_dims + [hidden_size]
    value_shape = [batch_size] + v_dims + [hidden_size]
    mask_shape = [batch_size] + mask_dims
    query = 10 * np.random.random_sample(query_shape)
    value = 10 * np.random.random_sample(value_shape)

    # Invoke the data with a random set of mask data. This should mask at least
    # one element.
    mask_data = np.random.randint(2, size=mask_shape).astype("bool")
    # Invoke the same data, but with a null mask (where no elements are masked).
    null_mask_data = np.ones(mask_shape)
    # Because one data is masked and one is not, the outputs should not be the
    # same.
    query_tensor = tf_keras.Input(query_shape[1:], name="query")
    value_tensor = tf_keras.Input(value_shape[1:], name="value")
    mask_tensor = tf_keras.Input(mask_shape[1:], name="mask")
    output = test_layer(query=query_tensor, value=value_tensor,
                        attention_mask=mask_tensor)
    model = tf_keras.Model([query_tensor, value_tensor, mask_tensor], output)

    self.assertNotAllClose(
        model.predict([query, value, mask_data]),
        model.predict([query, value, null_mask_data]))

  def test_dropout(self):
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=2, key_dim=2, dropout=0.5)

    # Generate data for the input (non-mask) tensors.
    from_data = tf_keras.backend.ones(shape=(32, 4, 8))
    to_data = tf_keras.backend.ones(shape=(32, 2, 8))
    train_out = test_layer(from_data, to_data, None, None, None, True)
    test_out = test_layer(from_data, to_data, None, None, None, False)

    # Output should be close when not in training mode,
    # and should not be close when enabling dropout in training mode.
    self.assertNotAllClose(
        tf_keras.backend.eval(train_out),
        tf_keras.backend.eval(test_out))

  def test_non_masked_self_attention_with_reuse(self):
    """Test with one input (self-attenntion) and no mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12, key_dim=64, reuse_attention=True)
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    reuse_scores = tf_keras.Input(shape=(12, 40, 40))
    output = test_layer(query, query, reuse_attention_scores=reuse_scores)
    self.assertEqual(output.shape.as_list(), [None, 40, 80])

  @parameterized.named_parameters(
      ("no_reuse_with_pe_max_seq_length_20", False, 20),
      ("reuse_all_with_pe_max_seq_length_20", True, 20),
      ("reuse_partial_with_pe_max_seq_length_20", 5, 20),
      ("no_reuse_with_pe_max_seq_length_40", False, 40),
      ("reuse_all_with_pe_max_seq_length_40", True, 40),
      ("reuse_partial_with_pe_max_seq_length_40", 5, 40))
  def test_non_masked_self_attention_with_relative_pe(self, reuse_attention,
                                                      pe_max_seq_length):
    """Test with one input (self-attenntion) and no mask tensor."""
    test_layer = attention.ReuseMultiHeadAttention(
        num_heads=12, key_dim=64, reuse_attention=reuse_attention,
        use_relative_pe=True, pe_max_seq_length=pe_max_seq_length)
    # Create a 3-dimensional input (the first dimension is implicit).
    query = tf_keras.Input(shape=(40, 80))
    reuse_scores = tf_keras.Input(shape=(12, 40, 40))
    output = test_layer(query, query, reuse_attention_scores=reuse_scores)
    self.assertEqual(output.shape.as_list(), [None, 40, 80])
    query = tf_keras.Input(shape=(30, 80))
    reuse_scores = tf_keras.Input(shape=(12, 30, 30))
    output = test_layer(query, query, reuse_attention_scores=reuse_scores)
    self.assertEqual(output.shape.as_list(), [None, 30, 80])
    query = tf_keras.Input(shape=(30, 80))
    key = tf_keras.Input(shape=(20, 80))
    reuse_scores = tf_keras.Input(shape=(12, 30, 20))
    output = test_layer(query, key, reuse_attention_scores=reuse_scores)
    self.assertEqual(output.shape.as_list(), [None, 30, 80])
    query = tf_keras.Input(shape=(50, 80))
    key = tf_keras.Input(shape=(60, 80))
    reuse_scores = tf_keras.Input(shape=(12, 50, 60))
    output = test_layer(query, key, reuse_attention_scores=reuse_scores)
    self.assertEqual(output.shape.as_list(), [None, 50, 80])

if __name__ == "__main__":
  tf.test.main()