File size: 5,906 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT cls-token classifier."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras

from official.nlp.modeling import layers


@tf_keras.utils.register_keras_serializable(package='Text')
class BertClassifier(tf_keras.Model):
  """Classifier model based on a BERT-style transformer-based encoder.

  This is an implementation of the network structure surrounding a transformer
  encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
  for Language Understanding" (https://arxiv.org/abs/1810.04805).

  The BertClassifier allows a user to pass in a transformer stack, and
  instantiates a classification network based on the passed `num_classes`
  argument. If `num_classes` is set to 1, a regression network is instantiated.

  *Note* that the model is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

  Args:
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    num_classes: Number of classes to predict from the classification network.
    initializer: The initializer (if any) to use in the classification networks.
      Defaults to a Glorot uniform initializer.
    dropout_rate: The dropout probability of the cls head.
    use_encoder_pooler: Whether to use the pooler layer pre-defined inside the
      encoder.
    head_name: Name of the classification head.
    cls_head: (Optional) The layer instance to use for the classifier head.
      It should take in the output from network and produce the final logits.
      If set, the arguments ('num_classes', 'initializer', 'dropout_rate',
      'use_encoder_pooler', 'head_name') will be ignored.
  """

  def __init__(self,
               network,
               num_classes,
               initializer='glorot_uniform',
               dropout_rate=0.1,
               use_encoder_pooler=True,
               head_name='sentence_prediction',
               cls_head=None,
               **kwargs):
    self.num_classes = num_classes
    self.head_name = head_name
    self.initializer = initializer
    self.use_encoder_pooler = use_encoder_pooler

    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a handle to the network inputs for use
    # when we construct the Model object at the end of init.
    inputs = network.inputs

    if use_encoder_pooler:
      # Because we have a copy of inputs to create this Model object, we can
      # invoke the Network object with its own input tensors to start the Model.
      outputs = network(inputs)
      if isinstance(outputs, list):
        cls_inputs = outputs[1]
      else:
        cls_inputs = outputs['pooled_output']
      cls_inputs = tf_keras.layers.Dropout(rate=dropout_rate)(cls_inputs)
    else:
      outputs = network(inputs)
      if isinstance(outputs, list):
        cls_inputs = outputs[0]
      else:
        cls_inputs = outputs['sequence_output']

    if cls_head:
      classifier = cls_head
    else:
      classifier = layers.ClassificationHead(
          inner_dim=0 if use_encoder_pooler else cls_inputs.shape[-1],
          num_classes=num_classes,
          initializer=initializer,
          dropout_rate=dropout_rate,
          name=head_name)

    predictions = classifier(cls_inputs)

    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
    super(BertClassifier, self).__init__(
        inputs=inputs, outputs=predictions, **kwargs)
    self._network = network
    self._cls_head = cls_head

    config_dict = self._make_config_dict()
    # We are storing the config dict as a namedtuple here to ensure checkpoint
    # compatibility with an earlier version of this model which did not track
    # the config dict attribute. TF does not track immutable attrs which
    # do not contain Trackables, so by creating a config namedtuple instead of
    # a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)
    self.classifier = classifier

  @property
  def checkpoint_items(self):
    items = dict(encoder=self._network)
    if hasattr(self.classifier, 'checkpoint_items'):
      for key, item in self.classifier.checkpoint_items.items():
        items['.'.join([self.classifier.name, key])] = item
    return items

  def get_config(self):
    return dict(self._config._asdict())

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  def _make_config_dict(self):
    return {
        'network': self._network,
        'num_classes': self.num_classes,
        'head_name': self.head_name,
        'initializer': self.initializer,
        'use_encoder_pooler': self.use_encoder_pooler,
        'cls_head': self._cls_head,
    }