File size: 6,593 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Trainer network for dual encoder style models."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras

from official.nlp.modeling import layers


@tf_keras.utils.register_keras_serializable(package='Text')
class DualEncoder(tf_keras.Model):
  """A dual encoder model based on a transformer-based encoder.

  This is an implementation of the dual encoder network structure based on the
  transfomer stack, as described in ["Language-agnostic BERT Sentence
  Embedding"](https://arxiv.org/abs/2007.01852)

  The DualEncoder allows a user to pass in a transformer stack, and build a dual
  encoder model based on the transformer stack.

  Args:
    network: A transformer network which should output an encoding output.
    max_seq_length: The maximum allowed sequence length for transformer.
    normalize: If set to True, normalize the encoding produced by transfomer.
    logit_scale: The scaling factor of dot products when doing training.
    logit_margin: The margin between positive and negative when doing training.
    output: The output style for this network. Can be either `logits` or
      `predictions`. If set to `predictions`, it will output the embedding
      producted by transformer network.
  """

  def __init__(self,
               network: tf_keras.Model,
               max_seq_length: int = 32,
               normalize: bool = True,
               logit_scale: float = 1.0,
               logit_margin: float = 0.0,
               output: str = 'logits',
               **kwargs) -> None:

    if output == 'logits':
      left_word_ids = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='left_word_ids')
      left_mask = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='left_mask')
      left_type_ids = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='left_type_ids')
    else:
      # Keep the consistant with legacy BERT hub module input names.
      left_word_ids = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
      left_mask = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
      left_type_ids = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')

    left_inputs = [left_word_ids, left_mask, left_type_ids]
    left_outputs = network(left_inputs)
    if isinstance(left_outputs, list):
      left_sequence_output, left_encoded = left_outputs
    else:
      left_sequence_output = left_outputs['sequence_output']
      left_encoded = left_outputs['pooled_output']
    if normalize:
      left_encoded = tf_keras.layers.Lambda(
          lambda x: tf.nn.l2_normalize(x, axis=1))(
              left_encoded)

    if output == 'logits':
      right_word_ids = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='right_word_ids')
      right_mask = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='right_mask')
      right_type_ids = tf_keras.layers.Input(
          shape=(max_seq_length,), dtype=tf.int32, name='right_type_ids')

      right_inputs = [right_word_ids, right_mask, right_type_ids]
      right_outputs = network(right_inputs)
      if isinstance(right_outputs, list):
        _, right_encoded = right_outputs
      else:
        right_encoded = right_outputs['pooled_output']
      if normalize:
        right_encoded = tf_keras.layers.Lambda(
            lambda x: tf.nn.l2_normalize(x, axis=1))(
                right_encoded)

      dot_products = layers.MatMulWithMargin(
          logit_scale=logit_scale,
          logit_margin=logit_margin,
          name='dot_product')

      inputs = [
          left_word_ids, left_mask, left_type_ids, right_word_ids, right_mask,
          right_type_ids
      ]
      left_logits, right_logits = dot_products(left_encoded, right_encoded)

      outputs = dict(left_logits=left_logits, right_logits=right_logits)

    elif output == 'predictions':
      inputs = [left_word_ids, left_mask, left_type_ids]

      # To keep consistent with legacy BERT hub modules, the outputs are
      # "pooled_output" and "sequence_output".
      outputs = dict(
          sequence_output=left_sequence_output, pooled_output=left_encoded)
    else:
      raise ValueError('output type %s is not supported' % output)

    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
    super(DualEncoder, self).__init__(inputs=inputs, outputs=outputs, **kwargs)

    config_dict = {
        'network': network,
        'max_seq_length': max_seq_length,
        'normalize': normalize,
        'logit_scale': logit_scale,
        'logit_margin': logit_margin,
        'output': output,
    }
    # We are storing the config dict as a namedtuple here to ensure checkpoint
    # compatibility with an earlier version of this model which did not track
    # the config dict attribute. TF does not track immutable attrs which
    # do not contain Trackables, so by creating a config namedtuple instead of
    # a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)

    self.network = network

  def get_config(self):
    return dict(self._config._asdict())

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
    items = dict(encoder=self.network)
    return items