Spaces:
Runtime error
Runtime error
File size: 6,593 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer network for dual encoder style models."""
# pylint: disable=g-classes-have-attributes
import collections
import tensorflow as tf, tf_keras
from official.nlp.modeling import layers
@tf_keras.utils.register_keras_serializable(package='Text')
class DualEncoder(tf_keras.Model):
"""A dual encoder model based on a transformer-based encoder.
This is an implementation of the dual encoder network structure based on the
transfomer stack, as described in ["Language-agnostic BERT Sentence
Embedding"](https://arxiv.org/abs/2007.01852)
The DualEncoder allows a user to pass in a transformer stack, and build a dual
encoder model based on the transformer stack.
Args:
network: A transformer network which should output an encoding output.
max_seq_length: The maximum allowed sequence length for transformer.
normalize: If set to True, normalize the encoding produced by transfomer.
logit_scale: The scaling factor of dot products when doing training.
logit_margin: The margin between positive and negative when doing training.
output: The output style for this network. Can be either `logits` or
`predictions`. If set to `predictions`, it will output the embedding
producted by transformer network.
"""
def __init__(self,
network: tf_keras.Model,
max_seq_length: int = 32,
normalize: bool = True,
logit_scale: float = 1.0,
logit_margin: float = 0.0,
output: str = 'logits',
**kwargs) -> None:
if output == 'logits':
left_word_ids = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='left_word_ids')
left_mask = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='left_mask')
left_type_ids = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='left_type_ids')
else:
# Keep the consistant with legacy BERT hub module input names.
left_word_ids = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
left_mask = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
left_type_ids = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
left_inputs = [left_word_ids, left_mask, left_type_ids]
left_outputs = network(left_inputs)
if isinstance(left_outputs, list):
left_sequence_output, left_encoded = left_outputs
else:
left_sequence_output = left_outputs['sequence_output']
left_encoded = left_outputs['pooled_output']
if normalize:
left_encoded = tf_keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1))(
left_encoded)
if output == 'logits':
right_word_ids = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='right_word_ids')
right_mask = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='right_mask')
right_type_ids = tf_keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='right_type_ids')
right_inputs = [right_word_ids, right_mask, right_type_ids]
right_outputs = network(right_inputs)
if isinstance(right_outputs, list):
_, right_encoded = right_outputs
else:
right_encoded = right_outputs['pooled_output']
if normalize:
right_encoded = tf_keras.layers.Lambda(
lambda x: tf.nn.l2_normalize(x, axis=1))(
right_encoded)
dot_products = layers.MatMulWithMargin(
logit_scale=logit_scale,
logit_margin=logit_margin,
name='dot_product')
inputs = [
left_word_ids, left_mask, left_type_ids, right_word_ids, right_mask,
right_type_ids
]
left_logits, right_logits = dot_products(left_encoded, right_encoded)
outputs = dict(left_logits=left_logits, right_logits=right_logits)
elif output == 'predictions':
inputs = [left_word_ids, left_mask, left_type_ids]
# To keep consistent with legacy BERT hub modules, the outputs are
# "pooled_output" and "sequence_output".
outputs = dict(
sequence_output=left_sequence_output, pooled_output=left_encoded)
else:
raise ValueError('output type %s is not supported' % output)
# b/164516224
# Once we've created the network using the Functional API, we call
# super().__init__ as though we were invoking the Functional API Model
# constructor, resulting in this object having all the properties of a model
# created using the Functional API. Once super().__init__ is called, we
# can assign attributes to `self` - note that all `self` assignments are
# below this line.
super(DualEncoder, self).__init__(inputs=inputs, outputs=outputs, **kwargs)
config_dict = {
'network': network,
'max_seq_length': max_seq_length,
'normalize': normalize,
'logit_scale': logit_scale,
'logit_margin': logit_margin,
'output': output,
}
# We are storing the config dict as a namedtuple here to ensure checkpoint
# compatibility with an earlier version of this model which did not track
# the config dict attribute. TF does not track immutable attrs which
# do not contain Trackables, so by creating a config namedtuple instead of
# a dict we avoid tracking it.
config_cls = collections.namedtuple('Config', config_dict.keys())
self._config = config_cls(**config_dict)
self.network = network
def get_config(self):
return dict(self._config._asdict())
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def checkpoint_items(self):
"""Returns a dictionary of items to be additionally checkpointed."""
items = dict(encoder=self.network)
return items
|