File size: 12,014 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""XLNet models."""
# pylint: disable=g-classes-have-attributes

from typing import Any, Mapping, Optional, Union

import tensorflow as tf, tf_keras

from official.nlp.modeling import layers
from official.nlp.modeling import networks


class XLNetMaskedLM(tf_keras.layers.Layer):
  """XLNet pretraining head."""

  def __init__(self,
               vocab_size: int,
               hidden_size: int,
               initializer: str = 'glorot_uniform',
               activation: str = 'gelu',
               name=None,
               **kwargs):
    super().__init__(name=name, **kwargs)
    self._vocab_size = vocab_size
    self._hidden_size = hidden_size
    self._initializer = initializer
    self._activation = activation

  def build(self, input_shape):
    self.dense = tf_keras.layers.Dense(
        units=self._hidden_size,
        activation=self._activation,
        kernel_initializer=self._initializer,
        name='transform/dense')
    self.layer_norm = tf_keras.layers.LayerNormalization(
        axis=-1, epsilon=1e-12, name='transform/LayerNorm')
    self.bias = self.add_weight(
        'output_bias/bias',
        shape=(self._vocab_size,),
        initializer='zeros',
        trainable=True)
    super().build(input_shape)

  def call(self,
           sequence_data: tf.Tensor,
           embedding_table: tf.Tensor):
    lm_data = self.dense(sequence_data)
    lm_data = self.layer_norm(lm_data)
    lm_data = tf.matmul(lm_data, embedding_table, transpose_b=True)
    logits = tf.nn.bias_add(lm_data, self.bias)
    return logits

  def get_config(self) -> Mapping[str, Any]:
    config = {
        'vocab_size':
            self._vocab_size,
        'hidden_size':
            self._hidden_size,
        'initializer':
            self._initializer
    }
    base_config = super(XLNetMaskedLM, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))


@tf_keras.utils.register_keras_serializable(package='Text')
class XLNetPretrainer(tf_keras.Model):
  """XLNet-based pretrainer.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

  Args:
    network: An XLNet/Transformer-XL based network. This network should output a
      sequence output and list of `state` tensors.
    mlm_activation: The activation (if any) to use in the Masked LM network. If
      None, then no activation will be used.
    mlm_initializer: The initializer (if any) to use in the masked LM. Defaults
      to a Glorot uniform initializer.

  """

  def __init__(
      self,
      network: Union[tf_keras.layers.Layer, tf_keras.Model],
      mlm_activation=None,
      mlm_initializer='glorot_uniform',
      name: Optional[str] = None,
      **kwargs):
    super().__init__(name=name, **kwargs)
    self._config = {
        'network': network,
        'mlm_activation': mlm_activation,
        'mlm_initializer': mlm_initializer,
    }
    self._network = network
    self._hidden_size = network.get_config()['hidden_size']
    self._vocab_size = network.get_config()['vocab_size']
    self._activation = mlm_activation
    self._initializer = mlm_initializer
    self._masked_lm = XLNetMaskedLM(
        vocab_size=self._vocab_size,
        hidden_size=self._hidden_size,
        initializer=self._initializer)

  def call(self, inputs: Mapping[str, Any]):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    input_word_ids = inputs['input_word_ids']
    input_type_ids = inputs['input_type_ids']
    masked_tokens = inputs['masked_tokens']
    permutation_mask = inputs['permutation_mask']
    target_mapping = inputs['target_mapping']
    state = inputs.get('state', None)

    attention_output, state = self._network(
        input_ids=input_word_ids,
        segment_ids=input_type_ids,
        input_mask=None,
        state=state,
        permutation_mask=permutation_mask,
        target_mapping=target_mapping,
        masked_tokens=masked_tokens)

    embedding_table = self._network.get_embedding_lookup_table()
    mlm_outputs = self._masked_lm(
        sequence_data=attention_output,
        embedding_table=embedding_table)
    return mlm_outputs, state

  def get_config(self) -> Mapping[str, Any]:
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def checkpoint_items(self):
    return dict(encoder=self._network)


@tf_keras.utils.register_keras_serializable(package='Text')
class XLNetClassifier(tf_keras.Model):
  """Classifier model based on XLNet.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

  Note: This model does not use utilize the memory mechanism used in the
  original XLNet Classifier.

  Args:
    network: An XLNet/Transformer-XL based network. This network should output a
      sequence output and list of `state` tensors.
    num_classes: Number of classes to predict from the classification network.
    initializer: The initializer (if any) to use in the classification networks.
      Defaults to a RandomNormal initializer.
    summary_type: Method used to summarize a sequence into a compact vector.
    dropout_rate: The dropout probability of the cls head.
    head_name: Name of the classification head.
  """

  def __init__(
      self,
      network: Union[tf_keras.layers.Layer, tf_keras.Model],
      num_classes: int,
      initializer: tf_keras.initializers.Initializer = 'random_normal',
      summary_type: str = 'last',
      dropout_rate: float = 0.1,
      head_name: str = 'sentence_prediction',  # pytype: disable=annotation-type-mismatch  # typed-keras
      **kwargs):
    super().__init__(**kwargs)
    self._network = network
    self._initializer = initializer
    self._summary_type = summary_type
    self._num_classes = num_classes
    self._config = {
        'network': network,
        'initializer': initializer,
        'num_classes': num_classes,
        'summary_type': summary_type,
        'dropout_rate': dropout_rate,
        'head_name': head_name,
    }

    if summary_type == 'last':
      cls_token_idx = -1
    elif summary_type == 'first':
      cls_token_idx = 0
    else:
      raise ValueError('Invalid summary type provided: %s.' % summary_type)

    self.classifier = layers.ClassificationHead(
        inner_dim=network.get_config()['hidden_size'],
        num_classes=num_classes,
        initializer=initializer,
        dropout_rate=dropout_rate,
        cls_token_idx=cls_token_idx,
        name=head_name)

  def call(self, inputs: Mapping[str, Any]):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    input_ids = inputs['input_word_ids']
    segment_ids = inputs['input_type_ids']
    input_mask = tf.cast(inputs['input_mask'], tf.float32)
    state = inputs.get('mems', None)

    attention_output, _ = self._network(
        input_ids=input_ids,
        segment_ids=segment_ids,
        input_mask=input_mask,
        state=state)

    logits = self.classifier(attention_output)

    return logits

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

  @property
  def checkpoint_items(self):
    items = dict(encoder=self._network)
    if hasattr(self.classifier, 'checkpoint_items'):
      for key, item in self.classifier.checkpoint_items.items():
        items['.'.join([self.classifier.name, key])] = item
    return items


@tf_keras.utils.register_keras_serializable(package='Text')
class XLNetSpanLabeler(tf_keras.Model):
  """Span labeler model based on XLNet.

  This is an implementation of the network structure surrounding a
  Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
  Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).

  Args:
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    start_n_top: Beam size for span start.
    end_n_top: Beam size for span end.
    dropout_rate: The dropout rate for the span labeling layer.
    span_labeling_activation: The activation for the span labeling head.
    initializer: The initializer (if any) to use in the span labeling network.
      Defaults to a Glorot uniform initializer.
  """

  def __init__(
      self,
      network: Union[tf_keras.layers.Layer, tf_keras.Model],
      start_n_top: int = 5,
      end_n_top: int = 5,
      dropout_rate: float = 0.1,
      span_labeling_activation: tf_keras.initializers.Initializer = 'tanh',
      initializer: tf_keras.initializers.Initializer = 'glorot_uniform',  # pytype: disable=annotation-type-mismatch  # typed-keras
      **kwargs):
    super().__init__(**kwargs)
    self._config = {
        'network': network,
        'start_n_top': start_n_top,
        'end_n_top': end_n_top,
        'dropout_rate': dropout_rate,
        'span_labeling_activation': span_labeling_activation,
        'initializer': initializer,
    }
    network_config = network.get_config()
    try:
      input_width = network_config['inner_size']
      self._xlnet_base = True
    except KeyError:
      # BertEncoder uses 'intermediate_size' due to legacy naming.
      input_width = network_config['intermediate_size']
      self._xlnet_base = False

    self._network = network
    self._initializer = initializer
    self._start_n_top = start_n_top
    self._end_n_top = end_n_top
    self._dropout_rate = dropout_rate
    self._activation = span_labeling_activation
    self.span_labeling = networks.XLNetSpanLabeling(
        input_width=input_width,
        start_n_top=self._start_n_top,
        end_n_top=self._end_n_top,
        activation=self._activation,
        dropout_rate=self._dropout_rate,
        initializer=self._initializer)

  def call(self, inputs: Mapping[str, Any]):  # pytype: disable=signature-mismatch  # overriding-parameter-count-checks
    input_word_ids = inputs['input_word_ids']
    input_type_ids = inputs['input_type_ids']
    input_mask = inputs['input_mask']
    class_index = inputs['class_index']
    paragraph_mask = inputs['paragraph_mask']
    start_positions = inputs.get('start_positions', None)

    if self._xlnet_base:
      attention_output, _ = self._network(
          input_ids=input_word_ids,
          segment_ids=input_type_ids,
          input_mask=input_mask)
    else:
      network_output_dict = self._network(dict(
          input_word_ids=input_word_ids,
          input_type_ids=input_type_ids,
          input_mask=input_mask))
      attention_output = network_output_dict['sequence_output']

    outputs = self.span_labeling(
        sequence_data=attention_output,
        class_index=class_index,
        paragraph_mask=paragraph_mask,
        start_positions=start_positions)
    return outputs

  @property
  def checkpoint_items(self):
    return dict(encoder=self._network)

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)