Spaces:
Runtime error
Runtime error
File size: 12,014 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XLNet models."""
# pylint: disable=g-classes-have-attributes
from typing import Any, Mapping, Optional, Union
import tensorflow as tf, tf_keras
from official.nlp.modeling import layers
from official.nlp.modeling import networks
class XLNetMaskedLM(tf_keras.layers.Layer):
"""XLNet pretraining head."""
def __init__(self,
vocab_size: int,
hidden_size: int,
initializer: str = 'glorot_uniform',
activation: str = 'gelu',
name=None,
**kwargs):
super().__init__(name=name, **kwargs)
self._vocab_size = vocab_size
self._hidden_size = hidden_size
self._initializer = initializer
self._activation = activation
def build(self, input_shape):
self.dense = tf_keras.layers.Dense(
units=self._hidden_size,
activation=self._activation,
kernel_initializer=self._initializer,
name='transform/dense')
self.layer_norm = tf_keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name='transform/LayerNorm')
self.bias = self.add_weight(
'output_bias/bias',
shape=(self._vocab_size,),
initializer='zeros',
trainable=True)
super().build(input_shape)
def call(self,
sequence_data: tf.Tensor,
embedding_table: tf.Tensor):
lm_data = self.dense(sequence_data)
lm_data = self.layer_norm(lm_data)
lm_data = tf.matmul(lm_data, embedding_table, transpose_b=True)
logits = tf.nn.bias_add(lm_data, self.bias)
return logits
def get_config(self) -> Mapping[str, Any]:
config = {
'vocab_size':
self._vocab_size,
'hidden_size':
self._hidden_size,
'initializer':
self._initializer
}
base_config = super(XLNetMaskedLM, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_keras.utils.register_keras_serializable(package='Text')
class XLNetPretrainer(tf_keras.Model):
"""XLNet-based pretrainer.
This is an implementation of the network structure surrounding a
Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).
Args:
network: An XLNet/Transformer-XL based network. This network should output a
sequence output and list of `state` tensors.
mlm_activation: The activation (if any) to use in the Masked LM network. If
None, then no activation will be used.
mlm_initializer: The initializer (if any) to use in the masked LM. Defaults
to a Glorot uniform initializer.
"""
def __init__(
self,
network: Union[tf_keras.layers.Layer, tf_keras.Model],
mlm_activation=None,
mlm_initializer='glorot_uniform',
name: Optional[str] = None,
**kwargs):
super().__init__(name=name, **kwargs)
self._config = {
'network': network,
'mlm_activation': mlm_activation,
'mlm_initializer': mlm_initializer,
}
self._network = network
self._hidden_size = network.get_config()['hidden_size']
self._vocab_size = network.get_config()['vocab_size']
self._activation = mlm_activation
self._initializer = mlm_initializer
self._masked_lm = XLNetMaskedLM(
vocab_size=self._vocab_size,
hidden_size=self._hidden_size,
initializer=self._initializer)
def call(self, inputs: Mapping[str, Any]): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
input_word_ids = inputs['input_word_ids']
input_type_ids = inputs['input_type_ids']
masked_tokens = inputs['masked_tokens']
permutation_mask = inputs['permutation_mask']
target_mapping = inputs['target_mapping']
state = inputs.get('state', None)
attention_output, state = self._network(
input_ids=input_word_ids,
segment_ids=input_type_ids,
input_mask=None,
state=state,
permutation_mask=permutation_mask,
target_mapping=target_mapping,
masked_tokens=masked_tokens)
embedding_table = self._network.get_embedding_lookup_table()
mlm_outputs = self._masked_lm(
sequence_data=attention_output,
embedding_table=embedding_table)
return mlm_outputs, state
def get_config(self) -> Mapping[str, Any]:
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def checkpoint_items(self):
return dict(encoder=self._network)
@tf_keras.utils.register_keras_serializable(package='Text')
class XLNetClassifier(tf_keras.Model):
"""Classifier model based on XLNet.
This is an implementation of the network structure surrounding a
Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).
Note: This model does not use utilize the memory mechanism used in the
original XLNet Classifier.
Args:
network: An XLNet/Transformer-XL based network. This network should output a
sequence output and list of `state` tensors.
num_classes: Number of classes to predict from the classification network.
initializer: The initializer (if any) to use in the classification networks.
Defaults to a RandomNormal initializer.
summary_type: Method used to summarize a sequence into a compact vector.
dropout_rate: The dropout probability of the cls head.
head_name: Name of the classification head.
"""
def __init__(
self,
network: Union[tf_keras.layers.Layer, tf_keras.Model],
num_classes: int,
initializer: tf_keras.initializers.Initializer = 'random_normal',
summary_type: str = 'last',
dropout_rate: float = 0.1,
head_name: str = 'sentence_prediction', # pytype: disable=annotation-type-mismatch # typed-keras
**kwargs):
super().__init__(**kwargs)
self._network = network
self._initializer = initializer
self._summary_type = summary_type
self._num_classes = num_classes
self._config = {
'network': network,
'initializer': initializer,
'num_classes': num_classes,
'summary_type': summary_type,
'dropout_rate': dropout_rate,
'head_name': head_name,
}
if summary_type == 'last':
cls_token_idx = -1
elif summary_type == 'first':
cls_token_idx = 0
else:
raise ValueError('Invalid summary type provided: %s.' % summary_type)
self.classifier = layers.ClassificationHead(
inner_dim=network.get_config()['hidden_size'],
num_classes=num_classes,
initializer=initializer,
dropout_rate=dropout_rate,
cls_token_idx=cls_token_idx,
name=head_name)
def call(self, inputs: Mapping[str, Any]): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
input_ids = inputs['input_word_ids']
segment_ids = inputs['input_type_ids']
input_mask = tf.cast(inputs['input_mask'], tf.float32)
state = inputs.get('mems', None)
attention_output, _ = self._network(
input_ids=input_ids,
segment_ids=segment_ids,
input_mask=input_mask,
state=state)
logits = self.classifier(attention_output)
return logits
def get_config(self):
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
@property
def checkpoint_items(self):
items = dict(encoder=self._network)
if hasattr(self.classifier, 'checkpoint_items'):
for key, item in self.classifier.checkpoint_items.items():
items['.'.join([self.classifier.name, key])] = item
return items
@tf_keras.utils.register_keras_serializable(package='Text')
class XLNetSpanLabeler(tf_keras.Model):
"""Span labeler model based on XLNet.
This is an implementation of the network structure surrounding a
Transformer-XL encoder as described in "XLNet: Generalized Autoregressive
Pretraining for Language Understanding" (https://arxiv.org/abs/1906.08237).
Args:
network: A transformer network. This network should output a sequence output
and a classification output. Furthermore, it should expose its embedding
table via a "get_embedding_table" method.
start_n_top: Beam size for span start.
end_n_top: Beam size for span end.
dropout_rate: The dropout rate for the span labeling layer.
span_labeling_activation: The activation for the span labeling head.
initializer: The initializer (if any) to use in the span labeling network.
Defaults to a Glorot uniform initializer.
"""
def __init__(
self,
network: Union[tf_keras.layers.Layer, tf_keras.Model],
start_n_top: int = 5,
end_n_top: int = 5,
dropout_rate: float = 0.1,
span_labeling_activation: tf_keras.initializers.Initializer = 'tanh',
initializer: tf_keras.initializers.Initializer = 'glorot_uniform', # pytype: disable=annotation-type-mismatch # typed-keras
**kwargs):
super().__init__(**kwargs)
self._config = {
'network': network,
'start_n_top': start_n_top,
'end_n_top': end_n_top,
'dropout_rate': dropout_rate,
'span_labeling_activation': span_labeling_activation,
'initializer': initializer,
}
network_config = network.get_config()
try:
input_width = network_config['inner_size']
self._xlnet_base = True
except KeyError:
# BertEncoder uses 'intermediate_size' due to legacy naming.
input_width = network_config['intermediate_size']
self._xlnet_base = False
self._network = network
self._initializer = initializer
self._start_n_top = start_n_top
self._end_n_top = end_n_top
self._dropout_rate = dropout_rate
self._activation = span_labeling_activation
self.span_labeling = networks.XLNetSpanLabeling(
input_width=input_width,
start_n_top=self._start_n_top,
end_n_top=self._end_n_top,
activation=self._activation,
dropout_rate=self._dropout_rate,
initializer=self._initializer)
def call(self, inputs: Mapping[str, Any]): # pytype: disable=signature-mismatch # overriding-parameter-count-checks
input_word_ids = inputs['input_word_ids']
input_type_ids = inputs['input_type_ids']
input_mask = inputs['input_mask']
class_index = inputs['class_index']
paragraph_mask = inputs['paragraph_mask']
start_positions = inputs.get('start_positions', None)
if self._xlnet_base:
attention_output, _ = self._network(
input_ids=input_word_ids,
segment_ids=input_type_ids,
input_mask=input_mask)
else:
network_output_dict = self._network(dict(
input_word_ids=input_word_ids,
input_type_ids=input_type_ids,
input_mask=input_mask))
attention_output = network_output_dict['sequence_output']
outputs = self.span_labeling(
sequence_data=attention_output,
class_index=class_index,
paragraph_mask=paragraph_mask,
start_positions=start_positions)
return outputs
@property
def checkpoint_items(self):
return dict(encoder=self._network)
def get_config(self):
return self._config
@classmethod
def from_config(cls, config, custom_objects=None):
return cls(**config)
|