File size: 5,749 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Test beam search helper methods."""

from absl.testing import parameterized
import tensorflow as tf, tf_keras

from official.nlp.modeling.ops import beam_search


class BeamSearchTests(tf.test.TestCase, parameterized.TestCase):

  def test_expand_to_beam_size(self):
    x = tf.ones([7, 4, 2, 5])
    x = beam_search.expand_to_beam_size(x, 3)
    shape = tf.shape(x)
    self.assertAllEqual([7, 3, 4, 2, 5], shape)

  def test_get_shape_keep_last_dim(self):
    y = tf.constant(4.0)
    x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5])
    shape = beam_search._get_shape_keep_last_dim(x)
    self.assertAllEqual([None, None, None, 5], shape.as_list())

  def test_flatten_beam_dim(self):
    x = tf.ones([7, 4, 2, 5])
    x = beam_search.flatten_beam_dim(x)
    self.assertAllEqual([28, 2, 5], tf.shape(x))

  def test_unflatten_beam_dim(self):
    x = tf.ones([28, 2, 5])
    x = beam_search._unflatten_beam_dim(x, 7, 4)
    self.assertAllEqual([7, 4, 2, 5], tf.shape(x))

  def test_gather_beams(self):
    x = tf.reshape(tf.range(24), [2, 3, 4])
    # x looks like:  [[[ 0  1  2  3]
    #                  [ 4  5  6  7]
    #                  [ 8  9 10 11]]
    #
    #                 [[12 13 14 15]
    #                  [16 17 18 19]
    #                  [20 21 22 23]]]

    y = beam_search.SequenceBeamSearch._gather_beams(x, [[1, 2], [0, 2]], 2, 2)
    self.assertAllEqual(
        [[[4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [20, 21, 22, 23]]],
        y)

  @parameterized.named_parameters([
      ('padded_decode_true_with_name', True, 0.0, 'decoding'),
      ('padded_decode_false_with_name', False, 0.0, 'decoding'),
      ('padded_decode_true_without_name', True, 0.0, None),
      ('padded_decode_false_without_name', False, 0.0, None),
      ('padded_decode_false_with_noise', False, 0.5, 'decoding'),
  ])
  def test_sequence_beam_search(self, padded_decode, noise_multiplier, name):
    # batch_size*beam_size, max_decode_length, vocab_size
    probabilities = tf.constant([[[0.2, 0.7, 0.1], [0.5, 0.3, 0.2],
                                  [0.1, 0.8, 0.1]],
                                 [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3],
                                  [0.2, 0.1, 0.7]]])
    # batch_size, max_decode_length, num_heads, embed_size per head
    x = tf.zeros([1, 3, 2, 32], dtype=tf.float32)
    cache = {'layer_%d' % layer: {'k': x, 'v': x} for layer in range(2)}

    def _get_test_symbols_to_logits_fn():
      """Test function that returns logits for next token."""

      def symbols_to_logits_fn(_, i, cache):
        logits = tf.cast(probabilities[:, i, :], tf.float32)
        return logits, cache
      return symbols_to_logits_fn

    predictions, _ = beam_search.sequence_beam_search(
        symbols_to_logits_fn=_get_test_symbols_to_logits_fn(),
        initial_ids=tf.zeros([1], dtype=tf.int32),
        initial_cache=cache,
        vocab_size=3,
        beam_size=2,
        alpha=0.6,
        max_decode_length=3,
        eos_id=9,
        padded_decode=padded_decode,
        dtype=tf.float32,
        noise_multiplier=noise_multiplier,
        decoding_name=name,
    )
    if noise_multiplier > 0:
      self.assertAllEqual([[[0, 1, 0, 1], [0, 0, 2, 2]]], predictions)
    else:
      self.assertAllEqual([[[0, 1, 0, 1], [0, 1, 1, 2]]], predictions)

  @parameterized.named_parameters([
      ('padded_decode_true_with_name', True, 0.0, 'decoding'),
      ('padded_decode_false_with_name', False, 0.0, 'decoding'),
      ('padded_decode_true_without_name', True, 0.0, None),
      ('padded_decode_false_without_name', False, 0.0, None),
      ('padded_decode_false_with_noise', False, 0.5, 'decoding'),
  ])
  def test_sequence_beam_search_multi_eos(
      self, padded_decode, noise_multiplier, name
  ):
    # batch_size*beam_size, max_decode_length, vocab_size
    probabilities = tf.constant([
        [[0.2, 0.7, 0.1], [0.5, 0.3, 0.2], [0.1, 0.8, 0.1]],
        [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.2, 0.1, 0.7]],
    ])
    # batch_size, max_decode_length, num_heads, embed_size per head
    x = tf.zeros([1, 3, 2, 32], dtype=tf.float32)
    cache = {'layer_%d' % layer: {'k': x, 'v': x} for layer in range(2)}

    def _get_test_symbols_to_logits_fn():
      """Test function that returns logits for next token."""

      def symbols_to_logits_fn(_, i, cache):
        logits = tf.cast(probabilities[:, i, :], tf.float32)
        return logits, cache

      return symbols_to_logits_fn

    predictions, _ = beam_search.sequence_beam_search(
        symbols_to_logits_fn=_get_test_symbols_to_logits_fn(),
        initial_ids=tf.zeros([1], dtype=tf.int32),
        initial_cache=cache,
        vocab_size=3,
        beam_size=2,
        alpha=0.6,
        max_decode_length=3,
        eos_id=[9, 10],
        padded_decode=padded_decode,
        dtype=tf.float32,
        noise_multiplier=noise_multiplier,
        decoding_name=name,
    )
    if noise_multiplier > 0:
      self.assertAllEqual([[[0, 1, 0, 1], [0, 0, 2, 2]]], predictions)
    else:
      self.assertAllEqual([[[0, 1, 0, 1], [0, 1, 1, 2]]], predictions)


if __name__ == '__main__':
  tf.test.main()