Spaces:
Runtime error
Runtime error
File size: 5,749 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test beam search helper methods."""
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.nlp.modeling.ops import beam_search
class BeamSearchTests(tf.test.TestCase, parameterized.TestCase):
def test_expand_to_beam_size(self):
x = tf.ones([7, 4, 2, 5])
x = beam_search.expand_to_beam_size(x, 3)
shape = tf.shape(x)
self.assertAllEqual([7, 3, 4, 2, 5], shape)
def test_get_shape_keep_last_dim(self):
y = tf.constant(4.0)
x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5])
shape = beam_search._get_shape_keep_last_dim(x)
self.assertAllEqual([None, None, None, 5], shape.as_list())
def test_flatten_beam_dim(self):
x = tf.ones([7, 4, 2, 5])
x = beam_search.flatten_beam_dim(x)
self.assertAllEqual([28, 2, 5], tf.shape(x))
def test_unflatten_beam_dim(self):
x = tf.ones([28, 2, 5])
x = beam_search._unflatten_beam_dim(x, 7, 4)
self.assertAllEqual([7, 4, 2, 5], tf.shape(x))
def test_gather_beams(self):
x = tf.reshape(tf.range(24), [2, 3, 4])
# x looks like: [[[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]]
#
# [[12 13 14 15]
# [16 17 18 19]
# [20 21 22 23]]]
y = beam_search.SequenceBeamSearch._gather_beams(x, [[1, 2], [0, 2]], 2, 2)
self.assertAllEqual(
[[[4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [20, 21, 22, 23]]],
y)
@parameterized.named_parameters([
('padded_decode_true_with_name', True, 0.0, 'decoding'),
('padded_decode_false_with_name', False, 0.0, 'decoding'),
('padded_decode_true_without_name', True, 0.0, None),
('padded_decode_false_without_name', False, 0.0, None),
('padded_decode_false_with_noise', False, 0.5, 'decoding'),
])
def test_sequence_beam_search(self, padded_decode, noise_multiplier, name):
# batch_size*beam_size, max_decode_length, vocab_size
probabilities = tf.constant([[[0.2, 0.7, 0.1], [0.5, 0.3, 0.2],
[0.1, 0.8, 0.1]],
[[0.1, 0.8, 0.1], [0.3, 0.4, 0.3],
[0.2, 0.1, 0.7]]])
# batch_size, max_decode_length, num_heads, embed_size per head
x = tf.zeros([1, 3, 2, 32], dtype=tf.float32)
cache = {'layer_%d' % layer: {'k': x, 'v': x} for layer in range(2)}
def _get_test_symbols_to_logits_fn():
"""Test function that returns logits for next token."""
def symbols_to_logits_fn(_, i, cache):
logits = tf.cast(probabilities[:, i, :], tf.float32)
return logits, cache
return symbols_to_logits_fn
predictions, _ = beam_search.sequence_beam_search(
symbols_to_logits_fn=_get_test_symbols_to_logits_fn(),
initial_ids=tf.zeros([1], dtype=tf.int32),
initial_cache=cache,
vocab_size=3,
beam_size=2,
alpha=0.6,
max_decode_length=3,
eos_id=9,
padded_decode=padded_decode,
dtype=tf.float32,
noise_multiplier=noise_multiplier,
decoding_name=name,
)
if noise_multiplier > 0:
self.assertAllEqual([[[0, 1, 0, 1], [0, 0, 2, 2]]], predictions)
else:
self.assertAllEqual([[[0, 1, 0, 1], [0, 1, 1, 2]]], predictions)
@parameterized.named_parameters([
('padded_decode_true_with_name', True, 0.0, 'decoding'),
('padded_decode_false_with_name', False, 0.0, 'decoding'),
('padded_decode_true_without_name', True, 0.0, None),
('padded_decode_false_without_name', False, 0.0, None),
('padded_decode_false_with_noise', False, 0.5, 'decoding'),
])
def test_sequence_beam_search_multi_eos(
self, padded_decode, noise_multiplier, name
):
# batch_size*beam_size, max_decode_length, vocab_size
probabilities = tf.constant([
[[0.2, 0.7, 0.1], [0.5, 0.3, 0.2], [0.1, 0.8, 0.1]],
[[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.2, 0.1, 0.7]],
])
# batch_size, max_decode_length, num_heads, embed_size per head
x = tf.zeros([1, 3, 2, 32], dtype=tf.float32)
cache = {'layer_%d' % layer: {'k': x, 'v': x} for layer in range(2)}
def _get_test_symbols_to_logits_fn():
"""Test function that returns logits for next token."""
def symbols_to_logits_fn(_, i, cache):
logits = tf.cast(probabilities[:, i, :], tf.float32)
return logits, cache
return symbols_to_logits_fn
predictions, _ = beam_search.sequence_beam_search(
symbols_to_logits_fn=_get_test_symbols_to_logits_fn(),
initial_ids=tf.zeros([1], dtype=tf.int32),
initial_cache=cache,
vocab_size=3,
beam_size=2,
alpha=0.6,
max_decode_length=3,
eos_id=[9, 10],
padded_decode=padded_decode,
dtype=tf.float32,
noise_multiplier=noise_multiplier,
decoding_name=name,
)
if noise_multiplier > 0:
self.assertAllEqual([[[0, 1, 0, 1], [0, 0, 2, 2]]], predictions)
else:
self.assertAllEqual([[[0, 1, 0, 1], [0, 1, 1, 2]]], predictions)
if __name__ == '__main__':
tf.test.main()
|