File size: 9,860 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ELECTRA pretraining task (Joint Masked LM and Replaced Token Detection)."""

import dataclasses
import tensorflow as tf, tf_keras

from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.nlp.configs import bert
from official.nlp.configs import electra
from official.nlp.configs import encoders
from official.nlp.data import pretrain_dataloader
from official.nlp.modeling import layers
from official.nlp.modeling import models


@dataclasses.dataclass
class ElectraPretrainConfig(cfg.TaskConfig):
  """The model config."""
  model: electra.ElectraPretrainerConfig = dataclasses.field(
      default_factory=lambda: electra.ElectraPretrainerConfig(  # pylint: disable=g-long-lambda
          cls_heads=[
              bert.ClsHeadConfig(
                  inner_dim=768,
                  num_classes=2,
                  dropout_rate=0.1,
                  name='next_sentence',
              )
          ]
      )
  )
  train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
  validation_data: cfg.DataConfig = dataclasses.field(
      default_factory=cfg.DataConfig
  )


def _build_pretrainer(
    config: electra.ElectraPretrainerConfig) -> models.ElectraPretrainer:
  """Instantiates ElectraPretrainer from the config."""
  generator_encoder_cfg = config.generator_encoder
  discriminator_encoder_cfg = config.discriminator_encoder
  # Copy discriminator's embeddings to generator for easier model serialization.
  discriminator_network = encoders.build_encoder(discriminator_encoder_cfg)
  if config.tie_embeddings:
    embedding_layer = discriminator_network.get_embedding_layer()
    generator_network = encoders.build_encoder(
        generator_encoder_cfg, embedding_layer=embedding_layer)
  else:
    generator_network = encoders.build_encoder(generator_encoder_cfg)

  generator_encoder_cfg = generator_encoder_cfg.get()
  return models.ElectraPretrainer(
      generator_network=generator_network,
      discriminator_network=discriminator_network,
      vocab_size=generator_encoder_cfg.vocab_size,
      num_classes=config.num_classes,
      sequence_length=config.sequence_length,
      num_token_predictions=config.num_masked_tokens,
      mlm_activation=tf_utils.get_activation(
          generator_encoder_cfg.hidden_activation),
      mlm_initializer=tf_keras.initializers.TruncatedNormal(
          stddev=generator_encoder_cfg.initializer_range),
      classification_heads=[
          layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
      ],
      disallow_correct=config.disallow_correct)


@task_factory.register_task_cls(ElectraPretrainConfig)
class ElectraPretrainTask(base_task.Task):
  """ELECTRA Pretrain Task (Masked LM + Replaced Token Detection)."""

  def build_model(self):
    return _build_pretrainer(self.task_config.model)

  def build_losses(self,
                   labels,
                   model_outputs,
                   metrics,
                   aux_losses=None) -> tf.Tensor:
    metrics = dict([(metric.name, metric) for metric in metrics])

    # generator lm and (optional) nsp loss.
    lm_prediction_losses = tf_keras.losses.sparse_categorical_crossentropy(
        labels['masked_lm_ids'],
        tf.cast(model_outputs['lm_outputs'], tf.float32),
        from_logits=True)
    lm_label_weights = labels['masked_lm_weights']
    lm_numerator_loss = tf.reduce_sum(lm_prediction_losses * lm_label_weights)
    lm_denominator_loss = tf.reduce_sum(lm_label_weights)
    mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss)
    metrics['lm_example_loss'].update_state(mlm_loss)
    if 'next_sentence_labels' in labels:
      sentence_labels = labels['next_sentence_labels']
      sentence_outputs = tf.cast(
          model_outputs['sentence_outputs'], dtype=tf.float32)
      sentence_loss = tf_keras.losses.sparse_categorical_crossentropy(
          sentence_labels, sentence_outputs, from_logits=True)
      metrics['next_sentence_loss'].update_state(sentence_loss)
      total_loss = mlm_loss + sentence_loss
    else:
      total_loss = mlm_loss

    # discriminator replaced token detection (rtd) loss.
    rtd_logits = model_outputs['disc_logits']
    rtd_labels = tf.cast(model_outputs['disc_label'], tf.float32)
    input_mask = tf.cast(labels['input_mask'], tf.float32)
    rtd_ind_loss = tf.nn.sigmoid_cross_entropy_with_logits(
        logits=rtd_logits, labels=rtd_labels)
    rtd_numerator = tf.reduce_sum(input_mask * rtd_ind_loss)
    rtd_denominator = tf.reduce_sum(input_mask)
    rtd_loss = tf.math.divide_no_nan(rtd_numerator, rtd_denominator)
    metrics['discriminator_loss'].update_state(rtd_loss)
    total_loss = total_loss + \
        self.task_config.model.discriminator_loss_weight * rtd_loss

    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    metrics['total_loss'].update_state(total_loss)
    return total_loss

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for pretraining."""
    if params.input_path == 'dummy':

      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
        return dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids,
            masked_lm_positions=dummy_lm,
            masked_lm_ids=dummy_lm,
            masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
            next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

    return pretrain_dataloader.BertPretrainDataLoader(params).load(
        input_context)

  def build_metrics(self, training=None):
    del training
    metrics = [
        tf_keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
        tf_keras.metrics.Mean(name='lm_example_loss'),
        tf_keras.metrics.SparseCategoricalAccuracy(
            name='discriminator_accuracy'),
    ]
    if self.task_config.train_data.use_next_sentence_label:
      metrics.append(
          tf_keras.metrics.SparseCategoricalAccuracy(
              name='next_sentence_accuracy'))
      metrics.append(tf_keras.metrics.Mean(name='next_sentence_loss'))

    metrics.append(tf_keras.metrics.Mean(name='discriminator_loss'))
    metrics.append(tf_keras.metrics.Mean(name='total_loss'))

    return metrics

  def process_metrics(self, metrics, labels, model_outputs):
    metrics = dict([(metric.name, metric) for metric in metrics])
    if 'masked_lm_accuracy' in metrics:
      metrics['masked_lm_accuracy'].update_state(labels['masked_lm_ids'],
                                                 model_outputs['lm_outputs'],
                                                 labels['masked_lm_weights'])
    if 'next_sentence_accuracy' in metrics:
      metrics['next_sentence_accuracy'].update_state(
          labels['next_sentence_labels'], model_outputs['sentence_outputs'])
    if 'discriminator_accuracy' in metrics:
      disc_logits_expanded = tf.expand_dims(model_outputs['disc_logits'], -1)
      discrim_full_logits = tf.concat(
          [-1.0 * disc_logits_expanded, disc_logits_expanded], -1)
      metrics['discriminator_accuracy'].update_state(
          model_outputs['disc_label'], discrim_full_logits,
          labels['input_mask'])

  def train_step(self, inputs, model: tf_keras.Model,
                 optimizer: tf_keras.optimizers.Optimizer, metrics):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    with tf.GradientTape() as tape:
      outputs = model(inputs, training=True)
      # Computes per-replica loss.
      loss = self.build_losses(
          labels=inputs,
          model_outputs=outputs,
          metrics=metrics,
          aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    optimizer.apply_gradients(list(zip(grads, tvars)))
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}

  def validation_step(self, inputs, model: tf_keras.Model, metrics):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    outputs = model(inputs, training=False)
    loss = self.build_losses(
        labels=inputs,
        model_outputs=outputs,
        metrics=metrics,
        aux_losses=model.losses)
    self.process_metrics(metrics, inputs, outputs)
    return {self.loss: loss}