Spaces:
Runtime error
Runtime error
File size: 9,860 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ELECTRA pretraining task (Joint Masked LM and Replaced Token Detection)."""
import dataclasses
import tensorflow as tf, tf_keras
from official.core import base_task
from official.core import config_definitions as cfg
from official.core import task_factory
from official.modeling import tf_utils
from official.nlp.configs import bert
from official.nlp.configs import electra
from official.nlp.configs import encoders
from official.nlp.data import pretrain_dataloader
from official.nlp.modeling import layers
from official.nlp.modeling import models
@dataclasses.dataclass
class ElectraPretrainConfig(cfg.TaskConfig):
"""The model config."""
model: electra.ElectraPretrainerConfig = dataclasses.field(
default_factory=lambda: electra.ElectraPretrainerConfig( # pylint: disable=g-long-lambda
cls_heads=[
bert.ClsHeadConfig(
inner_dim=768,
num_classes=2,
dropout_rate=0.1,
name='next_sentence',
)
]
)
)
train_data: cfg.DataConfig = dataclasses.field(default_factory=cfg.DataConfig)
validation_data: cfg.DataConfig = dataclasses.field(
default_factory=cfg.DataConfig
)
def _build_pretrainer(
config: electra.ElectraPretrainerConfig) -> models.ElectraPretrainer:
"""Instantiates ElectraPretrainer from the config."""
generator_encoder_cfg = config.generator_encoder
discriminator_encoder_cfg = config.discriminator_encoder
# Copy discriminator's embeddings to generator for easier model serialization.
discriminator_network = encoders.build_encoder(discriminator_encoder_cfg)
if config.tie_embeddings:
embedding_layer = discriminator_network.get_embedding_layer()
generator_network = encoders.build_encoder(
generator_encoder_cfg, embedding_layer=embedding_layer)
else:
generator_network = encoders.build_encoder(generator_encoder_cfg)
generator_encoder_cfg = generator_encoder_cfg.get()
return models.ElectraPretrainer(
generator_network=generator_network,
discriminator_network=discriminator_network,
vocab_size=generator_encoder_cfg.vocab_size,
num_classes=config.num_classes,
sequence_length=config.sequence_length,
num_token_predictions=config.num_masked_tokens,
mlm_activation=tf_utils.get_activation(
generator_encoder_cfg.hidden_activation),
mlm_initializer=tf_keras.initializers.TruncatedNormal(
stddev=generator_encoder_cfg.initializer_range),
classification_heads=[
layers.ClassificationHead(**cfg.as_dict()) for cfg in config.cls_heads
],
disallow_correct=config.disallow_correct)
@task_factory.register_task_cls(ElectraPretrainConfig)
class ElectraPretrainTask(base_task.Task):
"""ELECTRA Pretrain Task (Masked LM + Replaced Token Detection)."""
def build_model(self):
return _build_pretrainer(self.task_config.model)
def build_losses(self,
labels,
model_outputs,
metrics,
aux_losses=None) -> tf.Tensor:
metrics = dict([(metric.name, metric) for metric in metrics])
# generator lm and (optional) nsp loss.
lm_prediction_losses = tf_keras.losses.sparse_categorical_crossentropy(
labels['masked_lm_ids'],
tf.cast(model_outputs['lm_outputs'], tf.float32),
from_logits=True)
lm_label_weights = labels['masked_lm_weights']
lm_numerator_loss = tf.reduce_sum(lm_prediction_losses * lm_label_weights)
lm_denominator_loss = tf.reduce_sum(lm_label_weights)
mlm_loss = tf.math.divide_no_nan(lm_numerator_loss, lm_denominator_loss)
metrics['lm_example_loss'].update_state(mlm_loss)
if 'next_sentence_labels' in labels:
sentence_labels = labels['next_sentence_labels']
sentence_outputs = tf.cast(
model_outputs['sentence_outputs'], dtype=tf.float32)
sentence_loss = tf_keras.losses.sparse_categorical_crossentropy(
sentence_labels, sentence_outputs, from_logits=True)
metrics['next_sentence_loss'].update_state(sentence_loss)
total_loss = mlm_loss + sentence_loss
else:
total_loss = mlm_loss
# discriminator replaced token detection (rtd) loss.
rtd_logits = model_outputs['disc_logits']
rtd_labels = tf.cast(model_outputs['disc_label'], tf.float32)
input_mask = tf.cast(labels['input_mask'], tf.float32)
rtd_ind_loss = tf.nn.sigmoid_cross_entropy_with_logits(
logits=rtd_logits, labels=rtd_labels)
rtd_numerator = tf.reduce_sum(input_mask * rtd_ind_loss)
rtd_denominator = tf.reduce_sum(input_mask)
rtd_loss = tf.math.divide_no_nan(rtd_numerator, rtd_denominator)
metrics['discriminator_loss'].update_state(rtd_loss)
total_loss = total_loss + \
self.task_config.model.discriminator_loss_weight * rtd_loss
if aux_losses:
total_loss += tf.add_n(aux_losses)
metrics['total_loss'].update_state(total_loss)
return total_loss
def build_inputs(self, params, input_context=None):
"""Returns tf.data.Dataset for pretraining."""
if params.input_path == 'dummy':
def dummy_data(_):
dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
dummy_lm = tf.zeros((1, params.max_predictions_per_seq), dtype=tf.int32)
return dict(
input_word_ids=dummy_ids,
input_mask=dummy_ids,
input_type_ids=dummy_ids,
masked_lm_positions=dummy_lm,
masked_lm_ids=dummy_lm,
masked_lm_weights=tf.cast(dummy_lm, dtype=tf.float32),
next_sentence_labels=tf.zeros((1, 1), dtype=tf.int32))
dataset = tf.data.Dataset.range(1)
dataset = dataset.repeat()
dataset = dataset.map(
dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset
return pretrain_dataloader.BertPretrainDataLoader(params).load(
input_context)
def build_metrics(self, training=None):
del training
metrics = [
tf_keras.metrics.SparseCategoricalAccuracy(name='masked_lm_accuracy'),
tf_keras.metrics.Mean(name='lm_example_loss'),
tf_keras.metrics.SparseCategoricalAccuracy(
name='discriminator_accuracy'),
]
if self.task_config.train_data.use_next_sentence_label:
metrics.append(
tf_keras.metrics.SparseCategoricalAccuracy(
name='next_sentence_accuracy'))
metrics.append(tf_keras.metrics.Mean(name='next_sentence_loss'))
metrics.append(tf_keras.metrics.Mean(name='discriminator_loss'))
metrics.append(tf_keras.metrics.Mean(name='total_loss'))
return metrics
def process_metrics(self, metrics, labels, model_outputs):
metrics = dict([(metric.name, metric) for metric in metrics])
if 'masked_lm_accuracy' in metrics:
metrics['masked_lm_accuracy'].update_state(labels['masked_lm_ids'],
model_outputs['lm_outputs'],
labels['masked_lm_weights'])
if 'next_sentence_accuracy' in metrics:
metrics['next_sentence_accuracy'].update_state(
labels['next_sentence_labels'], model_outputs['sentence_outputs'])
if 'discriminator_accuracy' in metrics:
disc_logits_expanded = tf.expand_dims(model_outputs['disc_logits'], -1)
discrim_full_logits = tf.concat(
[-1.0 * disc_logits_expanded, disc_logits_expanded], -1)
metrics['discriminator_accuracy'].update_state(
model_outputs['disc_label'], discrim_full_logits,
labels['input_mask'])
def train_step(self, inputs, model: tf_keras.Model,
optimizer: tf_keras.optimizers.Optimizer, metrics):
"""Does forward and backward.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
with tf.GradientTape() as tape:
outputs = model(inputs, training=True)
# Computes per-replica loss.
loss = self.build_losses(
labels=inputs,
model_outputs=outputs,
metrics=metrics,
aux_losses=model.losses)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss = loss / tf.distribute.get_strategy().num_replicas_in_sync
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
optimizer.apply_gradients(list(zip(grads, tvars)))
self.process_metrics(metrics, inputs, outputs)
return {self.loss: loss}
def validation_step(self, inputs, model: tf_keras.Model, metrics):
"""Validatation step.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
outputs = model(inputs, training=False)
loss = self.build_losses(
labels=inputs,
model_outputs=outputs,
metrics=metrics,
aux_losses=model.losses)
self.process_metrics(metrics, inputs, outputs)
return {self.loss: loss}
|