Spaces:
Runtime error
Runtime error
File size: 10,440 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.tasks.sentence_prediction."""
import functools
import os
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.configs import bert
from official.nlp.configs import encoders
from official.nlp.data import sentence_prediction_dataloader
from official.nlp.tasks import masked_lm
from official.nlp.tasks import sentence_prediction
def _create_fake_dataset(output_path, seq_length, num_classes, num_examples):
"""Creates a fake dataset."""
writer = tf.io.TFRecordWriter(output_path)
def create_int_feature(values):
return tf.train.Feature(
int64_list=tf.train.Int64List(value=np.ravel(values)))
def create_float_feature(values):
return tf.train.Feature(
float_list=tf.train.FloatList(value=np.ravel(values)))
for i in range(num_examples):
features = {}
input_ids = np.random.randint(100, size=(seq_length))
features["input_ids"] = create_int_feature(input_ids)
features["input_mask"] = create_int_feature(np.ones_like(input_ids))
features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
features["example_id"] = create_int_feature([i])
if num_classes == 1:
features["label_ids"] = create_float_feature([np.random.random()])
else:
features["label_ids"] = create_int_feature(
[np.random.random_integers(0, num_classes - 1, size=())])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
def setUp(self):
super(SentencePredictionTaskTest, self).setUp()
self._train_data_config = (
sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path="dummy", seq_length=128, global_batch_size=1))
def get_model_config(self, num_classes):
return sentence_prediction.ModelConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)),
num_classes=num_classes)
def _run_task(self, config):
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
metrics = task.build_metrics()
strategy = tf.distribute.get_strategy()
dataset = strategy.distribute_datasets_from_function(
functools.partial(task.build_inputs, config.train_data))
iterator = iter(dataset)
optimizer = tf_keras.optimizers.SGD(learning_rate=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
model.save(os.path.join(self.get_temp_dir(), "saved_model"))
return task.validation_step(next(iterator), model, metrics=metrics)
@parameterized.named_parameters(
("init_cls_pooler", True),
("init_encoder", False),
)
def test_task(self, init_cls_pooler):
# Saves a checkpoint.
pretrain_cfg = bert.PretrainerConfig(
encoder=encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)),
cls_heads=[
bert.ClsHeadConfig(
inner_dim=768, num_classes=2, name="next_sentence")
])
pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
# The model variables will be created after the forward call.
_ = pretrain_model(pretrain_model.inputs)
ckpt = tf.train.Checkpoint(
model=pretrain_model, **pretrain_model.checkpoint_items)
init_path = ckpt.save(self.get_temp_dir())
# Creates the task.
config = sentence_prediction.SentencePredictionConfig(
init_checkpoint=init_path,
model=self.get_model_config(num_classes=2),
train_data=self._train_data_config,
init_cls_pooler=init_cls_pooler)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
metrics = task.build_metrics()
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
optimizer = tf_keras.optimizers.SGD(learning_rate=0.1)
task.initialize(model)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
task.validation_step(next(iterator), model, metrics=metrics)
@parameterized.named_parameters(
{
"testcase_name": "regression",
"num_classes": 1,
},
{
"testcase_name": "classification",
"num_classes": 2,
},
)
def test_metrics_and_losses(self, num_classes):
config = sentence_prediction.SentencePredictionConfig(
init_checkpoint=self.get_temp_dir(),
model=self.get_model_config(num_classes),
train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
metrics = task.build_metrics()
if num_classes == 1:
self.assertIsInstance(metrics[0], tf_keras.metrics.MeanSquaredError)
else:
self.assertIsInstance(metrics[0],
tf_keras.metrics.SparseCategoricalAccuracy)
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
optimizer = tf_keras.optimizers.SGD(learning_rate=0.1)
task.train_step(next(iterator), model, optimizer, metrics=metrics)
logs = task.validation_step(next(iterator), model, metrics=metrics)
loss = logs["loss"].numpy()
if num_classes == 1:
self.assertGreater(loss, 1.0)
else:
self.assertLess(loss, 1.0)
@parameterized.parameters(("matthews_corrcoef", 2),
("pearson_spearman_corr", 1),
("f1", 2))
def test_np_metrics(self, metric_type, num_classes):
config = sentence_prediction.SentencePredictionConfig(
metric_type=metric_type,
init_checkpoint=self.get_temp_dir(),
model=self.get_model_config(num_classes),
train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(config)
model = task.build_model()
dataset = task.build_inputs(config.train_data)
iterator = iter(dataset)
strategy = tf.distribute.get_strategy()
distributed_outputs = strategy.run(
functools.partial(task.validation_step, model=model),
args=(next(iterator),))
outputs = tf.nest.map_structure(strategy.experimental_local_results,
distributed_outputs)
aggregated = task.aggregate_logs(step_outputs=outputs)
aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs)
self.assertIn(metric_type, task.reduce_aggregated_logs(aggregated))
def test_np_metrics_cola_partial_batch(self):
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
num_examples = 5
global_batch_size = 8
seq_length = 16
_create_fake_dataset(
train_data_path,
seq_length=seq_length,
num_classes=2,
num_examples=num_examples)
train_data_config = (
sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path=train_data_path,
seq_length=seq_length,
is_training=True,
label_type="int",
global_batch_size=global_batch_size,
drop_remainder=False,
include_example_id=True))
config = sentence_prediction.SentencePredictionConfig(
metric_type="matthews_corrcoef",
model=self.get_model_config(2),
train_data=train_data_config)
outputs = self._run_task(config)
self.assertEqual(outputs["sentence_prediction"].shape.as_list(), [8, 1])
def _export_bert_tfhub(self):
encoder = encoders.build_encoder(
encoders.EncoderConfig(
bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)))
encoder_inputs_dict = {x.name: x for x in encoder.inputs}
encoder_output_dict = encoder(encoder_inputs_dict)
core_model = tf_keras.Model(
inputs=encoder_inputs_dict, outputs=encoder_output_dict)
hub_destination = os.path.join(self.get_temp_dir(), "hub")
core_model.save(hub_destination, include_optimizer=False, save_format="tf")
return hub_destination
def test_task_with_hub(self):
hub_module_url = self._export_bert_tfhub()
config = sentence_prediction.SentencePredictionConfig(
hub_module_url=hub_module_url,
model=self.get_model_config(2),
train_data=self._train_data_config)
self._run_task(config)
@parameterized.named_parameters(("classification", 5), ("regression", 1))
def test_prediction(self, num_classes):
task_config = sentence_prediction.SentencePredictionConfig(
model=self.get_model_config(num_classes=num_classes),
train_data=self._train_data_config)
task = sentence_prediction.SentencePredictionTask(task_config)
model = task.build_model()
test_data_path = os.path.join(self.get_temp_dir(), "test.tf_record")
seq_length = 16
num_examples = 100
_create_fake_dataset(
test_data_path,
seq_length=seq_length,
num_classes=num_classes,
num_examples=num_examples)
test_data_config = (
sentence_prediction_dataloader.SentencePredictionDataConfig(
input_path=test_data_path,
seq_length=seq_length,
is_training=False,
label_type="int" if num_classes > 1 else "float",
global_batch_size=16,
drop_remainder=False,
include_example_id=True))
predictions = sentence_prediction.predict(task, test_data_config, model)
self.assertLen(predictions, num_examples)
for prediction in predictions:
self.assertEqual(prediction.dtype,
tf.int64 if num_classes > 1 else tf.float32)
if __name__ == "__main__":
tf.test.main()
|