File size: 6,881 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for official.nlp.tasks.translation."""
import functools
import os

import orbit
import tensorflow as tf, tf_keras

from sentencepiece import SentencePieceTrainer
from official.nlp.data import wmt_dataloader
from official.nlp.tasks import translation


def _generate_line_file(filepath, lines):
  with tf.io.gfile.GFile(filepath, "w") as f:
    for l in lines:
      f.write("{}\n".format(l))


def _generate_record_file(filepath, src_lines, tgt_lines):
  writer = tf.io.TFRecordWriter(filepath)
  for src, tgt in zip(src_lines, tgt_lines):
    example = tf.train.Example(
        features=tf.train.Features(
            feature={
                "en": tf.train.Feature(
                    bytes_list=tf.train.BytesList(
                        value=[src.encode()])),
                "reverse_en": tf.train.Feature(
                    bytes_list=tf.train.BytesList(
                        value=[tgt.encode()])),
            }))
    writer.write(example.SerializeToString())
  writer.close()


def _train_sentencepiece(input_path, vocab_size, model_path, eos_id=1):
  argstr = " ".join([
      f"--input={input_path}", f"--vocab_size={vocab_size}",
      "--character_coverage=0.995",
      f"--model_prefix={model_path}", "--model_type=bpe",
      "--bos_id=-1", "--pad_id=0", f"--eos_id={eos_id}", "--unk_id=2"
  ])
  SentencePieceTrainer.Train(argstr)


class TranslationTaskTest(tf.test.TestCase):

  def setUp(self):
    super(TranslationTaskTest, self).setUp()
    self._temp_dir = self.get_temp_dir()
    src_lines = [
        "abc ede fg",
        "bbcd ef a g",
        "de f a a g"
    ]
    tgt_lines = [
        "dd cc a ef  g",
        "bcd ef a g",
        "gef cd ba"
    ]
    self._record_input_path = os.path.join(self._temp_dir, "inputs.record")
    _generate_record_file(self._record_input_path, src_lines, tgt_lines)
    self._sentencepeice_input_path = os.path.join(self._temp_dir, "inputs.txt")
    _generate_line_file(self._sentencepeice_input_path, src_lines + tgt_lines)
    sentencepeice_model_prefix = os.path.join(self._temp_dir, "sp")
    _train_sentencepiece(self._sentencepeice_input_path, 11,
                         sentencepeice_model_prefix)
    self._sentencepeice_model_path = "{}.model".format(
        sentencepeice_model_prefix)

  def test_task(self):
    config = translation.TranslationConfig(
        model=translation.ModelConfig(
            encoder=translation.EncDecoder(num_layers=1),
            decoder=translation.EncDecoder(num_layers=1)),
        train_data=wmt_dataloader.WMTDataConfig(
            input_path=self._record_input_path,
            src_lang="en", tgt_lang="reverse_en",
            is_training=True, static_batch=True, global_batch_size=24,
            max_seq_length=12),
        sentencepiece_model_path=self._sentencepeice_model_path)
    task = translation.TranslationTask(config)
    model = task.build_model()
    dataset = task.build_inputs(config.train_data)
    iterator = iter(dataset)
    optimizer = tf_keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer)

  def test_no_sentencepiece_path(self):
    config = translation.TranslationConfig(
        model=translation.ModelConfig(
            encoder=translation.EncDecoder(num_layers=1),
            decoder=translation.EncDecoder(num_layers=1)),
        train_data=wmt_dataloader.WMTDataConfig(
            input_path=self._record_input_path,
            src_lang="en", tgt_lang="reverse_en",
            is_training=True, static_batch=True, global_batch_size=4,
            max_seq_length=4),
        sentencepiece_model_path=None)
    with self.assertRaisesRegex(
        ValueError,
        "Setencepiece model path not provided."):
      translation.TranslationTask(config)

  def test_sentencepiece_no_eos(self):
    sentencepeice_model_prefix = os.path.join(self._temp_dir, "sp_no_eos")
    _train_sentencepiece(self._sentencepeice_input_path, 20,
                         sentencepeice_model_prefix, eos_id=-1)
    sentencepeice_model_path = "{}.model".format(
        sentencepeice_model_prefix)
    config = translation.TranslationConfig(
        model=translation.ModelConfig(
            encoder=translation.EncDecoder(num_layers=1),
            decoder=translation.EncDecoder(num_layers=1)),
        train_data=wmt_dataloader.WMTDataConfig(
            input_path=self._record_input_path,
            src_lang="en", tgt_lang="reverse_en",
            is_training=True, static_batch=True, global_batch_size=4,
            max_seq_length=4),
        sentencepiece_model_path=sentencepeice_model_path)
    with self.assertRaisesRegex(
        ValueError,
        "EOS token not in tokenizer vocab.*"):
      translation.TranslationTask(config)

  def test_evaluation(self):
    config = translation.TranslationConfig(
        model=translation.ModelConfig(
            encoder=translation.EncDecoder(num_layers=1),
            decoder=translation.EncDecoder(num_layers=1),
            padded_decode=False,
            decode_max_length=64),
        validation_data=wmt_dataloader.WMTDataConfig(
            input_path=self._record_input_path, src_lang="en",
            tgt_lang="reverse_en", static_batch=True, global_batch_size=4),
        sentencepiece_model_path=self._sentencepeice_model_path)
    logging_dir = self.get_temp_dir()
    task = translation.TranslationTask(config, logging_dir=logging_dir)
    dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                   task.build_inputs,
                                                   config.validation_data)
    model = task.build_model()
    strategy = tf.distribute.get_strategy()
    aggregated = None
    for data in dataset:
      distributed_outputs = strategy.run(
          functools.partial(task.validation_step, model=model),
          args=(data,))
      outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                      distributed_outputs)
      aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs)
    metrics = task.reduce_aggregated_logs(aggregated)
    self.assertIn("sacrebleu_score", metrics)
    self.assertIn("bleu_score", metrics)

if __name__ == "__main__":
  tf.test.main()