File size: 7,865 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""Convert checkpoints created by Estimator (tf1) to be Keras compatible."""

import numpy as np
import tensorflow.compat.v1 as tf  # TF 1.x

# Mapping between old <=> new names. The source pattern in original variable
# name will be replaced by destination pattern.
BERT_NAME_REPLACEMENTS = (
    ("bert", "bert_model"),
    ("embeddings/word_embeddings", "word_embeddings/embeddings"),
    ("embeddings/token_type_embeddings",
     "embedding_postprocessor/type_embeddings"),
    ("embeddings/position_embeddings",
     "embedding_postprocessor/position_embeddings"),
    ("embeddings/LayerNorm", "embedding_postprocessor/layer_norm"),
    ("attention/self", "self_attention"),
    ("attention/output/dense", "self_attention_output"),
    ("attention/output/LayerNorm", "self_attention_layer_norm"),
    ("intermediate/dense", "intermediate"),
    ("output/dense", "output"),
    ("output/LayerNorm", "output_layer_norm"),
    ("pooler/dense", "pooler_transform"),
)

BERT_V2_NAME_REPLACEMENTS = (
    ("bert/", ""),
    ("encoder", "transformer"),
    ("embeddings/word_embeddings", "word_embeddings/embeddings"),
    ("embeddings/token_type_embeddings", "type_embeddings/embeddings"),
    ("embeddings/position_embeddings", "position_embedding/embeddings"),
    ("embeddings/LayerNorm", "embeddings/layer_norm"),
    ("attention/self", "self_attention"),
    ("attention/output/dense", "self_attention/attention_output"),
    ("attention/output/LayerNorm", "self_attention_layer_norm"),
    ("intermediate/dense", "intermediate"),
    ("output/dense", "output"),
    ("output/LayerNorm", "output_layer_norm"),
    ("pooler/dense", "pooler_transform"),
    ("cls/predictions", "bert/cls/predictions"),
    ("cls/predictions/output_bias", "cls/predictions/output_bias/bias"),
    ("cls/seq_relationship/output_bias", "predictions/transform/logits/bias"),
    ("cls/seq_relationship/output_weights",
     "predictions/transform/logits/kernel"),
)

BERT_PERMUTATIONS = ()

BERT_V2_PERMUTATIONS = (("cls/seq_relationship/output_weights", (1, 0)),)


def _bert_name_replacement(var_name, name_replacements):
  """Gets the variable name replacement."""
  for src_pattern, tgt_pattern in name_replacements:
    if src_pattern in var_name:
      old_var_name = var_name
      var_name = var_name.replace(src_pattern, tgt_pattern)
      tf.logging.info("Converted: %s --> %s", old_var_name, var_name)
  return var_name


def _has_exclude_patterns(name, exclude_patterns):
  """Checks if a string contains substrings that match patterns to exclude."""
  for p in exclude_patterns:
    if p in name:
      return True
  return False


def _get_permutation(name, permutations):
  """Checks whether a variable requires transposition by pattern matching."""
  for src_pattern, permutation in permutations:
    if src_pattern in name:
      tf.logging.info("Permuted: %s --> %s", name, permutation)
      return permutation

  return None


def _get_new_shape(name, shape, num_heads):
  """Checks whether a variable requires reshape by pattern matching."""
  if "self_attention/attention_output/kernel" in name:
    return tuple([num_heads, shape[0] // num_heads, shape[1]])
  if "self_attention/attention_output/bias" in name:
    return shape

  patterns = [
      "self_attention/query", "self_attention/value", "self_attention/key"
  ]
  for pattern in patterns:
    if pattern in name:
      if "kernel" in name:
        return tuple([shape[0], num_heads, shape[1] // num_heads])
      if "bias" in name:
        return tuple([num_heads, shape[0] // num_heads])
  return None


def create_v2_checkpoint(model,
                         src_checkpoint,
                         output_path,
                         checkpoint_model_name="model"):
  """Converts a name-based matched TF V1 checkpoint to TF V2 checkpoint."""
  # Uses streaming-restore in eager model to read V1 name-based checkpoints.
  model.load_weights(src_checkpoint).assert_existing_objects_matched()
  if hasattr(model, "checkpoint_items"):
    checkpoint_items = model.checkpoint_items
  else:
    checkpoint_items = {}

  checkpoint_items[checkpoint_model_name] = model
  checkpoint = tf.train.Checkpoint(**checkpoint_items)
  checkpoint.save(output_path)


def convert(checkpoint_from_path,
            checkpoint_to_path,
            num_heads,
            name_replacements,
            permutations,
            exclude_patterns=None):
  """Migrates the names of variables within a checkpoint.

  Args:
    checkpoint_from_path: Path to source checkpoint to be read in.
    checkpoint_to_path: Path to checkpoint to be written out.
    num_heads: The number of heads of the model.
    name_replacements: A list of tuples of the form (match_str, replace_str)
      describing variable names to adjust.
    permutations: A list of tuples of the form (match_str, permutation)
      describing permutations to apply to given variables. Note that match_str
      should match the original variable name, not the replaced one.
    exclude_patterns: A list of string patterns to exclude variables from
      checkpoint conversion.

  Returns:
    A dictionary that maps the new variable names to the Variable objects.
    A dictionary that maps the old variable names to the new variable names.
  """
  with tf.Graph().as_default():
    tf.logging.info("Reading checkpoint_from_path %s", checkpoint_from_path)
    reader = tf.train.NewCheckpointReader(checkpoint_from_path)
    name_shape_map = reader.get_variable_to_shape_map()
    new_variable_map = {}
    conversion_map = {}
    for var_name in name_shape_map:
      if exclude_patterns and _has_exclude_patterns(var_name, exclude_patterns):
        continue
      # Get the original tensor data.
      tensor = reader.get_tensor(var_name)

      # Look up the new variable name, if any.
      new_var_name = _bert_name_replacement(var_name, name_replacements)

      # See if we need to reshape the underlying tensor.
      new_shape = None
      if num_heads > 0:
        new_shape = _get_new_shape(new_var_name, tensor.shape, num_heads)
      if new_shape:
        tf.logging.info("Veriable %s has a shape change from %s to %s",
                        var_name, tensor.shape, new_shape)
        tensor = np.reshape(tensor, new_shape)

      # See if we need to permute the underlying tensor.
      permutation = _get_permutation(var_name, permutations)
      if permutation:
        tensor = np.transpose(tensor, permutation)

      # Create a new variable with the possibly-reshaped or transposed tensor.
      var = tf.Variable(tensor, name=var_name)

      # Save the variable into the new variable map.
      new_variable_map[new_var_name] = var

      # Keep a list of converter variables for sanity checking.
      if new_var_name != var_name:
        conversion_map[var_name] = new_var_name

    saver = tf.train.Saver(new_variable_map)

    with tf.Session() as sess:
      sess.run(tf.global_variables_initializer())
      tf.logging.info("Writing checkpoint_to_path %s", checkpoint_to_path)
      saver.save(sess, checkpoint_to_path, write_meta_graph=False)

  tf.logging.info("Summary:")
  tf.logging.info("  Converted %d variable name(s).", len(new_variable_map))
  tf.logging.info("  Converted: %s", str(conversion_map))