Spaces:
Runtime error
Runtime error
File size: 4,224 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFM common training driver."""
from absl import app
from absl import flags
from absl import logging
import gin
import tensorflow as tf, tf_keras
from official.common import distribute_utils
# pylint: disable=unused-import
from official.common import registry_imports
# pylint: enable=unused-import
from official.common import flags as tfm_flags
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
from official.nlp import continuous_finetune_lib
FLAGS = flags.FLAGS
flags.DEFINE_integer(
'pretrain_steps',
default=None,
help='The number of total training steps for the pretraining job.')
flags.DEFINE_bool(
'enable_async_checkpointing',
default=True,
help='A boolean indicating whether to enable async checkpoint saving')
def _run_experiment_with_preemption_recovery(params, model_dir):
"""Runs experiment and tries to reconnect when encounting a preemption."""
keep_training = True
while keep_training:
preemption_watcher = None
try:
distribution_strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=params.runtime.distribution_strategy,
all_reduce_alg=params.runtime.all_reduce_alg,
num_gpus=params.runtime.num_gpus,
tpu_address=params.runtime.tpu,
**params.runtime.model_parallelism())
with distribution_strategy.scope():
task = task_factory.get_task(params.task, logging_dir=model_dir)
# pylint: disable=line-too-long
preemption_watcher = None # copybara-replace
# pylint: enable=line-too-long
train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode=FLAGS.mode,
params=params,
model_dir=model_dir,
enable_async_checkpointing=FLAGS.enable_async_checkpointing)
keep_training = False
except tf.errors.OpError as e:
if preemption_watcher and preemption_watcher.preemption_message:
preemption_watcher.block_until_worker_exit()
logging.info(
'Some TPU workers had been preempted (message: %s), '
'retarting training from the last checkpoint...',
preemption_watcher.preemption_message)
keep_training = True
else:
raise e from None
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
params = train_utils.parse_configuration(FLAGS)
model_dir = FLAGS.model_dir
if 'train' in FLAGS.mode:
# Pure eval modes do not output yaml files. Otherwise continuous eval job
# may race against the train job for writing the same file.
train_utils.serialize_config(params, model_dir)
if FLAGS.mode == 'continuous_train_and_eval':
continuous_finetune_lib.run_continuous_finetune(
FLAGS.mode, params, model_dir, pretrain_steps=FLAGS.pretrain_steps)
else:
# Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
# can have significant impact on model speeds by utilizing float16 in case
# of GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only
# when dtype is float16
if params.runtime.mixed_precision_dtype:
performance.set_mixed_precision_policy(
params.runtime.mixed_precision_dtype)
_run_experiment_with_preemption_recovery(params, model_dir)
train_utils.save_gin_config(FLAGS.mode, model_dir)
if __name__ == '__main__':
tfm_flags.define_flags()
flags.mark_flags_as_required(['experiment', 'mode', 'model_dir'])
app.run(main)
|