Spaces:
Runtime error
Runtime error
File size: 27,447 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Panoptic Quality metric.
Panoptic Quality is an instance-based metric for evaluating the task of
image parsing, aka panoptic segmentation.
Please see the paper for details:
"Panoptic Segmentation", Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother and Piotr Dollar. arXiv:1801.00868, 2018.
Note that this metric class is branched from
https://github.com/tensorflow/models/blob/master/research/deeplab/evaluation/panoptic_quality.py
"""
import collections
from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.ops import box_ops
_EPSILON = 1e-10
def realdiv_maybe_zero(x, y):
"""Element-wise x / y where y may contain zeros, for those returns 0 too."""
return np.where(
np.less(np.abs(y), _EPSILON), np.zeros_like(x), np.divide(x, y))
def _ids_to_counts(id_array):
"""Given a numpy array, a mapping from each unique entry to its count."""
ids, counts = np.unique(id_array, return_counts=True)
return dict(zip(ids, counts))
class PanopticQuality:
"""Metric class for Panoptic Quality.
"Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother, Piotr Dollar.
https://arxiv.org/abs/1801.00868
"""
def __init__(self, num_categories, ignored_label, max_instances_per_category,
offset):
"""Initialization for PanopticQualityMetric.
Args:
num_categories: The number of segmentation categories (or "classes" in the
dataset).
ignored_label: A category id that is ignored in evaluation, e.g. the void
label as defined in COCO panoptic segmentation dataset.
max_instances_per_category: The maximum number of instances for each
category. Used in ensuring unique instance labels.
offset: The maximum number of unique labels. This is used, by multiplying
the ground-truth labels, to generate unique ids for individual regions
of overlap between ground-truth and predicted segments.
"""
self.num_categories = num_categories
self.ignored_label = ignored_label
self.max_instances_per_category = max_instances_per_category
self.offset = offset
self.reset()
def _naively_combine_labels(self, category_mask, instance_mask):
"""Naively creates a combined label array from categories and instances."""
return (category_mask.astype(np.uint32) * self.max_instances_per_category +
instance_mask.astype(np.uint32))
def compare_and_accumulate(self, groundtruths, predictions):
"""Compares predictions with ground-truths, and accumulates the metrics.
It is not assumed that instance ids are unique across different categories.
See for example combine_semantic_and_instance_predictions.py in official
PanopticAPI evaluation code for issues to consider when fusing category
and instance labels.
Instances ids of the ignored category have the meaning that id 0 is "void"
and remaining ones are crowd instances.
Args:
groundtruths: A dictionary contains ground-truth labels. It should contain
the following fields.
- category_mask: A 2D numpy uint16 array of ground-truth per-pixel
category labels.
- instance_mask: A 2D numpy uint16 array of ground-truth per-pixel
instance labels.
predictions: A dictionary contains the model outputs. It should contain
the following fields.
- category_array: A 2D numpy uint16 array of predicted per-pixel
category labels.
- instance_array: A 2D numpy uint16 array of predicted instance labels.
"""
groundtruth_category_mask = groundtruths['category_mask']
groundtruth_instance_mask = groundtruths['instance_mask']
predicted_category_mask = predictions['category_mask']
predicted_instance_mask = predictions['instance_mask']
# First, combine the category and instance labels so that every unique
# value for (category, instance) is assigned a unique integer label.
pred_segment_id = self._naively_combine_labels(predicted_category_mask,
predicted_instance_mask)
gt_segment_id = self._naively_combine_labels(groundtruth_category_mask,
groundtruth_instance_mask)
# Pre-calculate areas for all ground-truth and predicted segments.
gt_segment_areas = _ids_to_counts(gt_segment_id)
pred_segment_areas = _ids_to_counts(pred_segment_id)
# We assume there is only one void segment and it has instance id = 0.
void_segment_id = self.ignored_label * self.max_instances_per_category
# There may be other ignored ground-truth segments with instance id > 0,
# find those ids using the unique segment ids extracted with the area
# computation above.
ignored_segment_ids = {
gt_segment_id for gt_segment_id in gt_segment_areas
if (gt_segment_id //
self.max_instances_per_category) == self.ignored_label
}
# Next, combine the ground-truth and predicted labels. Divide up the pixels
# based on which ground-truth segment and predicted segment they belong to,
# this will assign a different 32-bit integer label to each choice of
# (ground-truth segment, predicted segment), encoded as
# gt_segment_id * offset + pred_segment_id.
intersection_id_array = (
gt_segment_id.astype(np.uint64) * self.offset +
pred_segment_id.astype(np.uint64))
# For every combination of (ground-truth segment, predicted segment) with a
# non-empty intersection, this counts the number of pixels in that
# intersection.
intersection_areas = _ids_to_counts(intersection_id_array)
# Helper function that computes the area of the overlap between a predicted
# segment and the ground-truth void/ignored segment.
def prediction_void_overlap(pred_segment_id):
void_intersection_id = void_segment_id * self.offset + pred_segment_id
return intersection_areas.get(void_intersection_id, 0)
# Compute overall ignored overlap.
def prediction_ignored_overlap(pred_segment_id):
total_ignored_overlap = 0
for ignored_segment_id in ignored_segment_ids:
intersection_id = ignored_segment_id * self.offset + pred_segment_id
total_ignored_overlap += intersection_areas.get(intersection_id, 0)
return total_ignored_overlap
# Sets that are populated with segments which ground-truth/predicted
# segments have been matched with overlapping predicted/ground-truth
# segments respectively.
gt_matched = set()
pred_matched = set()
# Calculate IoU per pair of intersecting segments of the same category.
for intersection_id, intersection_area in intersection_areas.items():
gt_segment_id = int(intersection_id // self.offset)
pred_segment_id = int(intersection_id % self.offset)
gt_category = int(gt_segment_id // self.max_instances_per_category)
pred_category = int(pred_segment_id // self.max_instances_per_category)
if gt_category != pred_category:
continue
# Union between the ground-truth and predicted segments being compared
# does not include the portion of the predicted segment that consists of
# ground-truth "void" pixels.
union = (
gt_segment_areas[gt_segment_id] +
pred_segment_areas[pred_segment_id] - intersection_area -
prediction_void_overlap(pred_segment_id))
iou = intersection_area / union
if iou > 0.5:
self.tp_per_class[gt_category] += 1
self.iou_per_class[gt_category] += iou
gt_matched.add(gt_segment_id)
pred_matched.add(pred_segment_id)
# Count false negatives for each category.
for gt_segment_id in gt_segment_areas:
if gt_segment_id in gt_matched:
continue
category = gt_segment_id // self.max_instances_per_category
# Failing to detect a void segment is not a false negative.
if category == self.ignored_label:
continue
self.fn_per_class[category] += 1
# Count false positives for each category.
for pred_segment_id in pred_segment_areas:
if pred_segment_id in pred_matched:
continue
# A false positive is not penalized if is mostly ignored in the
# ground-truth.
if (prediction_ignored_overlap(pred_segment_id) /
pred_segment_areas[pred_segment_id]) > 0.5:
continue
category = pred_segment_id // self.max_instances_per_category
self.fp_per_class[category] += 1
def _valid_categories(self):
"""Categories with a "valid" value for the metric, have > 0 instances.
We will ignore the `ignore_label` class and other classes which have
`tp + fn + fp = 0`.
Returns:
Boolean array of shape `[num_categories]`.
"""
valid_categories = np.not_equal(
self.tp_per_class + self.fn_per_class + self.fp_per_class, 0)
if self.ignored_label >= 0 and self.ignored_label < self.num_categories:
valid_categories[self.ignored_label] = False
return valid_categories
def result_per_category(self):
"""For supported metrics, return individual per-category metric values.
Returns:
A dictionary contains all per-class metrics, each metrics is a numpy array
of shape `[self.num_categories]`, where index `i` is the metrics value
over only that category.
"""
sq_per_class = realdiv_maybe_zero(self.iou_per_class, self.tp_per_class)
rq_per_class = realdiv_maybe_zero(
self.tp_per_class,
self.tp_per_class + 0.5 * self.fn_per_class + 0.5 * self.fp_per_class)
return {
'sq_per_class': sq_per_class,
'rq_per_class': rq_per_class,
'pq_per_class': np.multiply(sq_per_class, rq_per_class)
}
def result(self, is_thing=None):
"""Computes and returns the detailed metric results over all comparisons.
Args:
is_thing: A boolean array of length `num_categories`. The entry
`is_thing[category_id]` is True iff that category is a "thing" category
instead of "stuff."
Returns:
A dictionary with a breakdown of metrics and/or metric factors by things,
stuff, and all categories.
"""
results = self.result_per_category()
valid_categories = self._valid_categories()
# If known, break down which categories are valid _and_ things/stuff.
category_sets = collections.OrderedDict()
category_sets['All'] = valid_categories
if is_thing is not None:
category_sets['Things'] = np.logical_and(valid_categories, is_thing)
category_sets['Stuff'] = np.logical_and(valid_categories,
np.logical_not(is_thing))
for category_set_name, in_category_set in category_sets.items():
if np.any(in_category_set):
results.update({
f'{category_set_name}_pq':
np.mean(results['pq_per_class'][in_category_set]),
f'{category_set_name}_sq':
np.mean(results['sq_per_class'][in_category_set]),
f'{category_set_name}_rq':
np.mean(results['rq_per_class'][in_category_set]),
# The number of categories in this subset.
f'{category_set_name}_num_categories':
np.sum(in_category_set.astype(np.int32)),
})
else:
results.update({
f'{category_set_name}_pq': 0.,
f'{category_set_name}_sq': 0.,
f'{category_set_name}_rq': 0.,
f'{category_set_name}_num_categories': 0
})
return results
def reset(self):
"""Resets the accumulation to the metric class's state at initialization."""
self.iou_per_class = np.zeros(self.num_categories, dtype=np.float64)
self.tp_per_class = np.zeros(self.num_categories, dtype=np.float64)
self.fn_per_class = np.zeros(self.num_categories, dtype=np.float64)
self.fp_per_class = np.zeros(self.num_categories, dtype=np.float64)
def _get_instance_class_ids(
category_mask: tf.Tensor,
instance_mask: tf.Tensor,
max_num_instances: int,
ignored_label: int,
) -> tf.Tensor:
"""Get the class id of each instance (index starts from 1)."""
# (batch_size, height, width)
instance_mask = tf.where(
(instance_mask == 0) | (category_mask == ignored_label), -1, instance_mask
)
# (batch_size, height, width, max_num_instances + 1)
instance_binary_mask = tf.one_hot(
instance_mask, max_num_instances + 1, dtype=tf.int32
)
# (batch_size, max_num_instances + 1)
result = tf.reduce_max(
instance_binary_mask * category_mask[..., tf.newaxis], axis=[1, 2]
)
# If not an instance, sets the class id to -1.
return tf.where(result == 0, -1, result)
class PanopticQualityV2(tf_keras.metrics.Metric):
"""Panoptic quality metrics with vectorized implementation.
This implementation is supported on TPU.
"Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother, Piotr Dollar.
https://arxiv.org/abs/1801.00868
"""
def __init__(
self,
num_categories: int,
is_thing: Optional[Tuple[bool, ...]] = None,
max_num_instances: int = 255,
ignored_label: int = 255,
rescale_predictions: bool = False,
name: Optional[str] = None,
dtype: Optional[Union[str, tf.dtypes.DType]] = tf.float32,
):
"""Initialization for PanopticQualityV2.
Args:
num_categories: the number of categories.
is_thing: a boolean array of length `num_categories`. The entry
`is_thing[category_id]` is True iff that category is a "thing" category
instead of "stuff". Default to `None`, and it means categories are not
classified into these two categories.
max_num_instances: the maximum number of instances in an image.
ignored_label: a category id that is ignored in evaluation, e.g. the void
label as defined in COCO panoptic segmentation dataset.
rescale_predictions: whether to scale back prediction to original image
sizes. If True, the image_info of the groundtruth is used to rescale
predictions.
name: string name of the metric instance.
dtype: data type of the metric result.
"""
super().__init__(name=name, dtype=dtype)
self._num_categories = num_categories
if is_thing is not None:
self._is_thing = is_thing
else:
self._is_thing = [True] * self._num_categories
self._max_num_instances = max_num_instances
self._ignored_label = ignored_label
self._rescale_predictions = rescale_predictions
# Variables
self.tp_count = self.add_weight(
'tp_count',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
self.fp_count = self.add_weight(
'fp_count',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
self.fn_count = self.add_weight(
'fn_count',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
self.tp_iou_sum = self.add_weight(
'tp_iou_sum',
shape=[self._num_categories],
initializer='zeros',
dtype=tf.float32,
)
def get_config(self) -> Dict[str, Any]:
"""Returns the serializable config of the metric."""
return {
'num_categories': self._num_categories,
'is_thing': self._is_thing,
'max_num_instances': self._max_num_instances,
'ignored_label': self._ignored_label,
'rescale_predictions': self._rescale_predictions,
'name': self.name,
'dtype': self.dtype,
}
def reset_state(self):
"""Resets all of the metric state variables."""
self.tp_count.assign(tf.zeros_like(self.tp_count))
self.fp_count.assign(tf.zeros_like(self.fp_count))
self.fn_count.assign(tf.zeros_like(self.fn_count))
self.tp_iou_sum.assign(tf.zeros_like(self.tp_iou_sum))
def update_state(
self, y_true: Dict[str, tf.Tensor], y_pred: Dict[str, tf.Tensor]
):
category_mask = tf.convert_to_tensor(y_pred['category_mask'], tf.int32)
instance_mask = tf.convert_to_tensor(y_pred['instance_mask'], tf.int32)
gt_category_mask = tf.convert_to_tensor(y_true['category_mask'], tf.int32)
gt_instance_mask = tf.convert_to_tensor(y_true['instance_mask'], tf.int32)
if self._rescale_predictions:
_, height, width = gt_category_mask.get_shape().as_list()
# Instead of cropping the masks to the original image shape (dynamic),
# here we keep the mask shape (fixed) and ignore the pixels outside the
# original image shape.
image_shape = tf.cast(y_true['image_info'][:, 0, :], tf.int32)
# (batch_size, 2)
y0_x0 = tf.broadcast_to(
tf.constant([[0, 0]], dtype=tf.int32), tf.shape(image_shape)
)
# (batch_size, 4)
image_shape_bbox = tf.concat([y0_x0, image_shape], axis=1)
# (batch_size, height, width)
image_shape_masks = box_ops.bbox2mask(
bbox=image_shape_bbox,
image_height=height,
image_width=width,
dtype=tf.bool,
)
# (batch_size, height, width)
category_mask = tf.where(
image_shape_masks, category_mask, self._ignored_label
)
instance_mask = tf.where(image_shape_masks, instance_mask, 0)
gt_category_mask = tf.where(
image_shape_masks, gt_category_mask, self._ignored_label
)
gt_instance_mask = tf.where(image_shape_masks, gt_instance_mask, 0)
self._update_thing_classes(
category_mask, instance_mask, gt_category_mask, gt_instance_mask
)
self._update_stuff_classes(category_mask, gt_category_mask)
def _update_thing_classes(
self,
category_mask: tf.Tensor,
instance_mask: tf.Tensor,
gt_category_mask: tf.Tensor,
gt_instance_mask: tf.Tensor,
):
_, height, width = category_mask.get_shape().as_list()
# (batch_size, num_detections + 1)
instance_class_ids = _get_instance_class_ids(
category_mask,
instance_mask,
self._max_num_instances,
self._ignored_label,
)
# (batch_size, num_gts + 1)
gt_instance_class_ids = _get_instance_class_ids(
gt_category_mask,
gt_instance_mask,
self._max_num_instances,
self._ignored_label,
)
# (batch_size, height, width)
valid_mask = gt_category_mask != self._ignored_label
# (batch_size, height, width, num_detections + 1)
instance_binary_masks = tf.one_hot(
tf.where(instance_mask > 0, instance_mask, -1),
self._max_num_instances + 1,
on_value=True,
off_value=False,
)
# (batch_size, height, width, num_gts + 1)
gt_instance_binary_masks = tf.one_hot(
tf.where(gt_instance_mask > 0, gt_instance_mask, -1),
self._max_num_instances + 1,
on_value=True,
off_value=False,
)
# (batch_size, height * width, num_detections + 1)
flattened_binary_masks = tf.reshape(
instance_binary_masks & valid_mask[..., tf.newaxis],
[-1, height * width, self._max_num_instances + 1],
)
# (batch_size, height * width, num_gts + 1)
flattened_gt_binary_masks = tf.reshape(
gt_instance_binary_masks & valid_mask[..., tf.newaxis],
[-1, height * width, self._max_num_instances + 1],
)
# (batch_size, num_detections + 1, height * width)
flattened_binary_masks = tf.transpose(flattened_binary_masks, [0, 2, 1])
# (batch_size, num_detections + 1, num_gts + 1)
intersection = tf.matmul(
tf.cast(flattened_binary_masks, tf.float32),
tf.cast(flattened_gt_binary_masks, tf.float32),
)
union = (
tf.math.count_nonzero(
flattened_binary_masks, axis=-1, keepdims=True, dtype=tf.float32
)
+ tf.math.count_nonzero(
flattened_gt_binary_masks, axis=-2, keepdims=True, dtype=tf.float32
)
- intersection
)
# (batch_size, num_detections + 1, num_gts + 1)
detection_to_gt_ious = tf.math.divide_no_nan(intersection, union)
detection_matches_gt = (
(detection_to_gt_ious > 0.5)
& (
instance_class_ids[:, :, tf.newaxis]
== gt_instance_class_ids[:, tf.newaxis, :]
)
& (gt_instance_class_ids[:, tf.newaxis, :] > 0)
)
# (batch_size, num_gts + 1)
is_tp = tf.reduce_any(detection_matches_gt, axis=1)
# (batch_size, num_gts + 1)
tp_iou = tf.reduce_max(
tf.where(detection_matches_gt, detection_to_gt_ious, 0), axis=1
)
# (batch_size, num_detections + 1)
is_fp = tf.reduce_any(instance_binary_masks, axis=[1, 2]) & ~tf.reduce_any(
detection_matches_gt, axis=2
)
# (batch_size, height, width, num_detections + 1)
fp_binary_mask = is_fp[:, tf.newaxis, tf.newaxis, :] & instance_binary_masks
# (batch_size, num_detections + 1)
fp_area = tf.math.count_nonzero(
fp_binary_mask, axis=[1, 2], dtype=tf.float32
)
# (batch_size, num_detections + 1)
fp_crowd_or_ignored_area = tf.math.count_nonzero(
fp_binary_mask
& (
(
# An instance detection matches a crowd ground truth instance if
# the instance class of the detection matches the class of the
# ground truth and the instance id of the ground truth is 0 (the
# instance is crowd).
(instance_mask > 0)
& (category_mask > 0)
& (gt_category_mask == category_mask)
& (gt_instance_mask == 0)
)
| (gt_category_mask == self._ignored_label)
)[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
# Don't count the detection as false positive if over 50% pixels of the
# instance detection are crowd of the matching class or ignored pixels in
# ground truth.
# (batch_size, num_detections + 1)
is_fp &= tf.math.divide_no_nan(fp_crowd_or_ignored_area, fp_area) <= 0.5
# (batch_size, num_detections + 1, num_categories)
detection_by_class = tf.one_hot(
instance_class_ids, self._num_categories, on_value=True, off_value=False
)
# (batch_size, num_gts + 1, num_categories)
gt_by_class = tf.one_hot(
gt_instance_class_ids,
self._num_categories,
on_value=True,
off_value=False,
)
# (num_categories,)
gt_count = tf.math.count_nonzero(gt_by_class, axis=[0, 1], dtype=tf.float32)
tp_count = tf.math.count_nonzero(
is_tp[..., tf.newaxis] & gt_by_class, axis=[0, 1], dtype=tf.float32
)
fn_count = gt_count - tp_count
fp_count = tf.math.count_nonzero(
is_fp[..., tf.newaxis] & detection_by_class,
axis=[0, 1],
dtype=tf.float32,
)
tp_iou_sum = tf.reduce_sum(
tf.cast(gt_by_class, tf.float32) * tp_iou[..., tf.newaxis], axis=[0, 1]
)
self.tp_count.assign_add(tp_count)
self.fn_count.assign_add(fn_count)
self.fp_count.assign_add(fp_count)
self.tp_iou_sum.assign_add(tp_iou_sum)
def _update_stuff_classes(
self, category_mask: tf.Tensor, gt_category_mask: tf.Tensor
):
# (batch_size, height, width, num_categories)
category_binary_mask = tf.one_hot(
category_mask, self._num_categories, on_value=True, off_value=False
)
gt_category_binary_mask = tf.one_hot(
gt_category_mask, self._num_categories, on_value=True, off_value=False
)
# (batch_size, height, width)
valid_mask = gt_category_mask != self._ignored_label
# (batch_size, num_categories)
intersection = tf.math.count_nonzero(
category_binary_mask
& gt_category_binary_mask
& valid_mask[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
union = tf.math.count_nonzero(
(category_binary_mask | gt_category_binary_mask)
& valid_mask[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
iou = tf.math.divide_no_nan(intersection, union)
is_thing = tf.constant(self._is_thing, dtype=tf.bool)
# (batch_size, num_categories)
is_tp = (iou > 0.5) & ~is_thing
is_fn = (
tf.reduce_any(gt_category_binary_mask, axis=[1, 2]) & ~is_thing & ~is_tp
)
is_fp = (
tf.reduce_any(category_binary_mask, axis=[1, 2]) & ~is_thing & ~is_tp
)
# (batch_size, height, width, num_categories)
fp_binary_mask = is_fp[:, tf.newaxis, tf.newaxis, :] & category_binary_mask
# (batch_size, num_categories)
fp_area = tf.math.count_nonzero(
fp_binary_mask, axis=[1, 2], dtype=tf.float32
)
fp_ignored_area = tf.math.count_nonzero(
fp_binary_mask
& (gt_category_mask == self._ignored_label)[..., tf.newaxis],
axis=[1, 2],
dtype=tf.float32,
)
# Don't count the detection as false positive if over 50% pixels of the
# stuff detection are ignored pixels in ground truth.
is_fp &= tf.math.divide_no_nan(fp_ignored_area, fp_area) <= 0.5
# (num_categories,)
tp_count = tf.math.count_nonzero(is_tp, axis=0, dtype=tf.float32)
fn_count = tf.math.count_nonzero(is_fn, axis=0, dtype=tf.float32)
fp_count = tf.math.count_nonzero(is_fp, axis=0, dtype=tf.float32)
tp_iou_sum = tf.reduce_sum(tf.cast(is_tp, tf.float32) * iou, axis=0)
self.tp_count.assign_add(tp_count)
self.fn_count.assign_add(fn_count)
self.fp_count.assign_add(fp_count)
self.tp_iou_sum.assign_add(tp_iou_sum)
def result(self) -> Dict[str, tf.Tensor]:
"""Returns the metrics values as a dict."""
# (num_categories,)
tp_fn_fp_count = self.tp_count + self.fn_count + self.fp_count
is_ignore_label = tf.one_hot(
self._ignored_label,
self._num_categories,
on_value=True,
off_value=False,
)
sq_per_class = tf.math.divide_no_nan(
self.tp_iou_sum, self.tp_count
) * tf.cast(~is_ignore_label, tf.float32)
rq_per_class = tf.math.divide_no_nan(
self.tp_count, self.tp_count + 0.5 * self.fp_count + 0.5 * self.fn_count
) * tf.cast(~is_ignore_label, tf.float32)
pq_per_class = sq_per_class * rq_per_class
is_thing = tf.constant(self._is_thing, dtype=tf.bool)
result = {
# (num_categories,)
'valid_thing_classes': (
(tp_fn_fp_count > 0) & is_thing & ~is_ignore_label
),
# (num_categories,)
'valid_stuff_classes': (
(tp_fn_fp_count > 0) & ~is_thing & ~is_ignore_label
),
# (num_categories,)
'sq_per_class': sq_per_class,
# (num_categories,)
'rq_per_class': rq_per_class,
# (num_categories,)
'pq_per_class': pq_per_class,
}
return result
|