Spaces:
Runtime error
Runtime error
File size: 8,571 Bytes
5672777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Layers for DeepLabV3."""
import tensorflow as tf, tf_keras
from official.modeling import tf_utils
class SpatialPyramidPooling(tf_keras.layers.Layer):
"""Implements the Atrous Spatial Pyramid Pooling.
References:
[Rethinking Atrous Convolution for Semantic Image Segmentation](
https://arxiv.org/pdf/1706.05587.pdf)
[Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation](https://arxiv.org/pdf/1802.02611.pdf)
"""
def __init__(
self,
output_channels,
dilation_rates,
pool_kernel_size=None,
use_sync_bn=False,
batchnorm_momentum=0.99,
batchnorm_epsilon=0.001,
activation='relu',
dropout=0.5,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
interpolation='bilinear',
use_depthwise_convolution=False,
**kwargs):
"""Initializes `SpatialPyramidPooling`.
Args:
output_channels: Number of channels produced by SpatialPyramidPooling.
dilation_rates: A list of integers for parallel dilated conv.
pool_kernel_size: A list of integers or None. If None, global average
pooling is applied, otherwise an average pooling of pool_kernel_size
is applied.
use_sync_bn: A bool, whether or not to use sync batch normalization.
batchnorm_momentum: A float for the momentum in BatchNorm. Defaults to
0.99.
batchnorm_epsilon: A float for the epsilon value in BatchNorm. Defaults to
0.001.
activation: A `str` for type of activation to be used. Defaults to 'relu'.
dropout: A float for the dropout rate before output. Defaults to 0.5.
kernel_initializer: Kernel initializer for conv layers. Defaults to
`glorot_uniform`.
kernel_regularizer: Kernel regularizer for conv layers. Defaults to None.
interpolation: The interpolation method for upsampling. Defaults to
`bilinear`.
use_depthwise_convolution: Allows spatial pooling to be separable
depthwise convolusions. [Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation](
https://arxiv.org/pdf/1802.02611.pdf)
**kwargs: Other keyword arguments for the layer.
"""
super(SpatialPyramidPooling, self).__init__(**kwargs)
self.output_channels = output_channels
self.dilation_rates = dilation_rates
self.use_sync_bn = use_sync_bn
self.batchnorm_momentum = batchnorm_momentum
self.batchnorm_epsilon = batchnorm_epsilon
self.activation = activation
self.dropout = dropout
self.kernel_initializer = tf_keras.initializers.get(kernel_initializer)
self.kernel_regularizer = tf_keras.regularizers.get(kernel_regularizer)
self.interpolation = interpolation
self.input_spec = tf_keras.layers.InputSpec(ndim=4)
self.pool_kernel_size = pool_kernel_size
self.use_depthwise_convolution = use_depthwise_convolution
def build(self, input_shape):
channels = input_shape[3]
self.aspp_layers = []
bn_op = tf_keras.layers.BatchNormalization
if tf_keras.backend.image_data_format() == 'channels_last':
bn_axis = -1
else:
bn_axis = 1
conv_sequential = tf_keras.Sequential([
tf_keras.layers.Conv2D(
filters=self.output_channels,
kernel_size=(1, 1),
kernel_initializer=tf_utils.clone_initializer(
self.kernel_initializer),
kernel_regularizer=self.kernel_regularizer,
use_bias=False),
bn_op(
axis=bn_axis,
momentum=self.batchnorm_momentum,
epsilon=self.batchnorm_epsilon,
synchronized=self.use_sync_bn),
tf_keras.layers.Activation(self.activation)
])
self.aspp_layers.append(conv_sequential)
for dilation_rate in self.dilation_rates:
leading_layers = []
kernel_size = (3, 3)
if self.use_depthwise_convolution:
leading_layers += [
tf_keras.layers.DepthwiseConv2D(
depth_multiplier=1,
kernel_size=kernel_size,
padding='same',
dilation_rate=dilation_rate,
use_bias=False)
]
kernel_size = (1, 1)
conv_sequential = tf_keras.Sequential(leading_layers + [
tf_keras.layers.Conv2D(
filters=self.output_channels,
kernel_size=kernel_size,
padding='same',
kernel_regularizer=self.kernel_regularizer,
kernel_initializer=tf_utils.clone_initializer(
self.kernel_initializer),
dilation_rate=dilation_rate,
use_bias=False),
bn_op(
axis=bn_axis,
momentum=self.batchnorm_momentum,
epsilon=self.batchnorm_epsilon,
synchronized=self.use_sync_bn),
tf_keras.layers.Activation(self.activation)
])
self.aspp_layers.append(conv_sequential)
if self.pool_kernel_size is None:
pool_sequential = tf_keras.Sequential([
tf_keras.layers.GlobalAveragePooling2D(),
tf_keras.layers.Reshape((1, 1, channels))])
else:
pool_sequential = tf_keras.Sequential([
tf_keras.layers.AveragePooling2D(self.pool_kernel_size)])
pool_sequential.add(
tf_keras.Sequential([
tf_keras.layers.Conv2D(
filters=self.output_channels,
kernel_size=(1, 1),
kernel_initializer=tf_utils.clone_initializer(
self.kernel_initializer),
kernel_regularizer=self.kernel_regularizer,
use_bias=False),
bn_op(
axis=bn_axis,
momentum=self.batchnorm_momentum,
epsilon=self.batchnorm_epsilon,
synchronized=self.use_sync_bn),
tf_keras.layers.Activation(self.activation)
]))
self.aspp_layers.append(pool_sequential)
self.projection = tf_keras.Sequential([
tf_keras.layers.Conv2D(
filters=self.output_channels,
kernel_size=(1, 1),
kernel_initializer=tf_utils.clone_initializer(
self.kernel_initializer),
kernel_regularizer=self.kernel_regularizer,
use_bias=False),
bn_op(
axis=bn_axis,
momentum=self.batchnorm_momentum,
epsilon=self.batchnorm_epsilon,
synchronized=self.use_sync_bn),
tf_keras.layers.Activation(self.activation),
tf_keras.layers.Dropout(rate=self.dropout)
])
def call(self, inputs, training=None):
if training is None:
training = tf_keras.backend.learning_phase()
result = []
for i, layer in enumerate(self.aspp_layers):
x = layer(inputs, training=training)
# Apply resize layer to the end of the last set of layers.
if i == len(self.aspp_layers) - 1:
x = tf.image.resize(tf.cast(x, tf.float32), tf.shape(inputs)[1:3])
result.append(tf.cast(x, inputs.dtype))
result = tf.concat(result, axis=-1)
result = self.projection(result, training=training)
return result
def get_config(self):
config = {
'output_channels': self.output_channels,
'dilation_rates': self.dilation_rates,
'pool_kernel_size': self.pool_kernel_size,
'use_sync_bn': self.use_sync_bn,
'batchnorm_momentum': self.batchnorm_momentum,
'batchnorm_epsilon': self.batchnorm_epsilon,
'activation': self.activation,
'dropout': self.dropout,
'kernel_initializer': tf_keras.initializers.serialize(
self.kernel_initializer),
'kernel_regularizer': tf_keras.regularizers.serialize(
self.kernel_regularizer),
'interpolation': self.interpolation,
}
base_config = super(SpatialPyramidPooling, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
|