File size: 72,020 Bytes
5672777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains common building blocks for neural networks."""

from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Text

# Import libraries
from absl import logging
import tensorflow as tf, tf_keras

from official.modeling import tf_utils
from official.nlp import modeling as nlp_modeling
from official.vision.modeling.layers import nn_layers


def _pad_strides(strides: int, axis: int) -> Tuple[int, int, int, int]:
  """Converts int to len 4 strides (`tf.nn.avg_pool` uses length 4)."""
  if axis == 1:
    return (1, 1, strides, strides)
  else:
    return (1, strides, strides, 1)


def _maybe_downsample(x: tf.Tensor, out_filter: int, strides: int,
                      axis: int) -> tf.Tensor:
  """Downsamples feature map and 0-pads tensor if in_filter != out_filter."""
  data_format = 'NCHW' if axis == 1 else 'NHWC'
  strides = _pad_strides(strides, axis=axis)

  x = tf.nn.avg_pool(x, strides, strides, 'VALID', data_format=data_format)

  in_filter = x.shape[axis]
  if in_filter < out_filter:
    # Pad on channel dimension with 0s: half on top half on bottom.
    pad_size = [(out_filter - in_filter) // 2, (out_filter - in_filter) // 2]
    if axis == 1:
      x = tf.pad(x, [[0, 0], pad_size, [0, 0], [0, 0]])
    else:
      x = tf.pad(x, [[0, 0], [0, 0], [0, 0], pad_size])

  return x + 0.


@tf_keras.utils.register_keras_serializable(package='Vision')
class ResidualBlock(tf_keras.layers.Layer):
  """A residual block."""

  def __init__(self,
               filters,
               strides,
               use_projection=False,
               se_ratio=None,
               resnetd_shortcut=False,
               stochastic_depth_drop_rate=None,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               use_explicit_padding: bool = False,
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               bn_trainable=True,
               **kwargs):
    """Initializes a residual block with BN after convolutions.

    Args:
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      strides: An `int` block stride. If greater than 1, this block will
        ultimately downsample the input.
      use_projection: A `bool` for whether this block should use a projection
        shortcut (versus the default identity shortcut). This is usually `True`
        for the first block of a block group, which may change the number of
        filters and the resolution.
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      resnetd_shortcut: A `bool` if True, apply the resnetd style modification
        to the shortcut connection. Not implemented in residual blocks.
      stochastic_depth_drop_rate: A `float` or None. if not None, drop rate for
        the stochastic depth layer.
      kernel_initializer: A `str` of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2d.
        Default to None.
      activation: A `str` name of the activation function.
      use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
        inputs so that the output dimensions are the same as if 'SAME' padding
        were used.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      bn_trainable: A `bool` that indicates whether batch norm layers should be
        trainable. Default to True.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(ResidualBlock, self).__init__(**kwargs)

    self._filters = filters
    self._strides = strides
    self._use_projection = use_projection
    self._se_ratio = se_ratio
    self._resnetd_shortcut = resnetd_shortcut
    self._use_explicit_padding = use_explicit_padding
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._kernel_initializer = kernel_initializer
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation_fn = tf_utils.get_activation(activation)
    self._bn_trainable = bn_trainable

  def build(self, input_shape):
    if self._use_projection:
      self._shortcut = tf_keras.layers.Conv2D(
          filters=self._filters,
          kernel_size=1,
          strides=self._strides,
          use_bias=False,
          kernel_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )

    conv1_padding = 'same'
    # explicit padding here is added for centernet
    if self._use_explicit_padding:
      self._pad = tf_keras.layers.ZeroPadding2D(padding=(1, 1))
      conv1_padding = 'valid'

    self._conv1 = tf_keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=3,
        strides=self._strides,
        padding=conv1_padding,
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable,
        synchronized=self._use_sync_bn,
    )

    self._conv2 = tf_keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=3,
        strides=1,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm2 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable,
        synchronized=self._use_sync_bn,
    )

    if self._se_ratio and self._se_ratio > 0 and self._se_ratio <= 1:
      self._squeeze_excitation = nn_layers.SqueezeExcitation(
          in_filters=self._filters,
          out_filters=self._filters,
          se_ratio=self._se_ratio,
          kernel_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)
    else:
      self._squeeze_excitation = None

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = None

    super(ResidualBlock, self).build(input_shape)

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'use_projection': self._use_projection,
        'se_ratio': self._se_ratio,
        'resnetd_shortcut': self._resnetd_shortcut,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_explicit_padding': self._use_explicit_padding,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'bn_trainable': self._bn_trainable
    }
    base_config = super(ResidualBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, training=None):
    shortcut = inputs
    if self._use_projection:
      shortcut = self._shortcut(shortcut)
      shortcut = self._norm0(shortcut)

    if self._use_explicit_padding:
      inputs = self._pad(inputs)
    x = self._conv1(inputs)
    x = self._norm1(x)
    x = self._activation_fn(x)

    x = self._conv2(x)
    x = self._norm2(x)

    if self._squeeze_excitation:
      x = self._squeeze_excitation(x)

    if self._stochastic_depth:
      x = self._stochastic_depth(x, training=training)

    return self._activation_fn(x + shortcut)


@tf_keras.utils.register_keras_serializable(package='Vision')
class BottleneckBlock(tf_keras.layers.Layer):
  """A standard bottleneck block."""

  def __init__(self,
               filters,
               strides,
               dilation_rate=1,
               use_projection=False,
               se_ratio=None,
               resnetd_shortcut=False,
               stochastic_depth_drop_rate=None,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               use_sync_bn=False,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               bn_trainable=True,
               **kwargs):
    """Initializes a standard bottleneck block with BN after convolutions.

    Args:
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      strides: An `int` block stride. If greater than 1, this block will
        ultimately downsample the input.
      dilation_rate: An `int` dilation_rate of convolutions. Default to 1.
      use_projection: A `bool` for whether this block should use a projection
        shortcut (versus the default identity shortcut). This is usually `True`
        for the first block of a block group, which may change the number of
        filters and the resolution.
      se_ratio: A `float` or None. Ratio of the Squeeze-and-Excitation layer.
      resnetd_shortcut: A `bool`. If True, apply the resnetd style modification
        to the shortcut connection.
      stochastic_depth_drop_rate: A `float` or None. If not None, drop rate for
        the stochastic depth layer.
      kernel_initializer: A `str` of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2d.
        Default to None.
      activation: A `str` name of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      bn_trainable: A `bool` that indicates whether batch norm layers should be
        trainable. Default to True.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(BottleneckBlock, self).__init__(**kwargs)

    self._filters = filters
    self._strides = strides
    self._dilation_rate = dilation_rate
    self._use_projection = use_projection
    self._se_ratio = se_ratio
    self._resnetd_shortcut = resnetd_shortcut
    self._use_sync_bn = use_sync_bn
    self._activation = activation
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._kernel_initializer = kernel_initializer
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._bn_trainable = bn_trainable

  def build(self, input_shape):
    if self._use_projection:
      if self._resnetd_shortcut:
        self._shortcut0 = tf_keras.layers.AveragePooling2D(
            pool_size=2, strides=self._strides, padding='same')
        self._shortcut1 = tf_keras.layers.Conv2D(
            filters=self._filters * 4,
            kernel_size=1,
            strides=1,
            use_bias=False,
            kernel_initializer=tf_utils.clone_initializer(
                self._kernel_initializer),
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer)
      else:
        self._shortcut = tf_keras.layers.Conv2D(
            filters=self._filters * 4,
            kernel_size=1,
            strides=self._strides,
            use_bias=False,
            kernel_initializer=tf_utils.clone_initializer(
                self._kernel_initializer),
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer)

      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          trainable=self._bn_trainable,
          synchronized=self._use_sync_bn,
      )

    self._conv1 = tf_keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable,
        synchronized=self._use_sync_bn,
    )
    self._activation1 = tf_utils.get_activation(
        self._activation, use_keras_layer=True)

    self._conv2 = tf_keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=3,
        strides=self._strides,
        dilation_rate=self._dilation_rate,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm2 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable,
        synchronized=self._use_sync_bn,
    )
    self._activation2 = tf_utils.get_activation(
        self._activation, use_keras_layer=True)

    self._conv3 = tf_keras.layers.Conv2D(
        filters=self._filters * 4,
        kernel_size=1,
        strides=1,
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm3 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        trainable=self._bn_trainable,
        synchronized=self._use_sync_bn,
    )
    self._activation3 = tf_utils.get_activation(
        self._activation, use_keras_layer=True)

    if self._se_ratio and self._se_ratio > 0 and self._se_ratio <= 1:
      self._squeeze_excitation = nn_layers.SqueezeExcitation(
          in_filters=self._filters * 4,
          out_filters=self._filters * 4,
          se_ratio=self._se_ratio,
          kernel_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)
    else:
      self._squeeze_excitation = None

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = None
    self._add = tf_keras.layers.Add()

    super(BottleneckBlock, self).build(input_shape)

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'dilation_rate': self._dilation_rate,
        'use_projection': self._use_projection,
        'se_ratio': self._se_ratio,
        'resnetd_shortcut': self._resnetd_shortcut,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'bn_trainable': self._bn_trainable
    }
    base_config = super(BottleneckBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, training=None):
    shortcut = inputs
    if self._use_projection:
      if self._resnetd_shortcut:
        shortcut = self._shortcut0(shortcut)
        shortcut = self._shortcut1(shortcut)
      else:
        shortcut = self._shortcut(shortcut)
      shortcut = self._norm0(shortcut)

    x = self._conv1(inputs)
    x = self._norm1(x)
    x = self._activation1(x)

    x = self._conv2(x)
    x = self._norm2(x)
    x = self._activation2(x)

    x = self._conv3(x)
    x = self._norm3(x)

    if self._squeeze_excitation:
      x = self._squeeze_excitation(x)

    if self._stochastic_depth:
      x = self._stochastic_depth(x, training=training)

    x = self._add([x, shortcut])
    return self._activation3(x)


@tf_keras.utils.register_keras_serializable(package='Vision')
class InvertedBottleneckBlock(tf_keras.layers.Layer):
  """An inverted bottleneck block."""

  def __init__(self,
               in_filters,
               out_filters,
               expand_ratio,
               strides,
               kernel_size=3,
               se_ratio=None,
               stochastic_depth_drop_rate=None,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               se_inner_activation='relu',
               se_gating_activation='sigmoid',
               se_round_down_protect=True,
               expand_se_in_filters=False,
               depthwise_activation=None,
               use_sync_bn=False,
               dilation_rate=1,
               divisible_by=1,
               regularize_depthwise=False,
               use_depthwise=True,
               use_residual=True,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               output_intermediate_endpoints=False,
               **kwargs):
    """Initializes an inverted bottleneck block with BN after convolutions.

    Args:
      in_filters: An `int` number of filters of the input tensor.
      out_filters: An `int` number of filters of the output tensor.
      expand_ratio: An `int` of expand_ratio for an inverted bottleneck block.
      strides: An `int` block stride. If greater than 1, this block will
        ultimately downsample the input.
      kernel_size: An `int` kernel_size of the depthwise conv layer.
      se_ratio: A `float` or None. If not None, se ratio for the squeeze and
        excitation layer.
      stochastic_depth_drop_rate: A `float` or None. if not None, drop rate for
        the stochastic depth layer.
      kernel_initializer: A `str` of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2d.
        Default to None.
      activation: A `str` name of the activation function.
      se_inner_activation: A `str` name of squeeze-excitation inner activation.
      se_gating_activation: A `str` name of squeeze-excitation gating
        activation.
      se_round_down_protect: A `bool` of whether round down more than 10% will
        be allowed in SE layer.
      expand_se_in_filters: A `bool` of whether or not to expand in_filter in
        squeeze and excitation layer.
      depthwise_activation: A `str` name of the activation function for
        depthwise only.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      dilation_rate: An `int` that specifies the dilation rate to use for.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
        this number. dilated convolution: An `int` to specify the same value for
        all spatial dimensions.
      regularize_depthwise: A `bool` of whether or not apply regularization on
        depthwise.
      use_depthwise: A `bool` of whether to uses fused convolutions instead of
        depthwise.
      use_residual: A `bool` of whether to include residual connection between
        input and output.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      output_intermediate_endpoints: A `bool` of whether or not output the
        intermediate endpoints.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(InvertedBottleneckBlock, self).__init__(**kwargs)

    self._in_filters = in_filters
    self._out_filters = out_filters
    self._expand_ratio = expand_ratio
    self._strides = strides
    self._kernel_size = kernel_size
    self._se_ratio = se_ratio
    self._divisible_by = divisible_by
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._dilation_rate = dilation_rate
    self._use_sync_bn = use_sync_bn
    self._regularize_depthwise = regularize_depthwise
    self._use_depthwise = use_depthwise
    self._use_residual = use_residual
    self._activation = activation
    self._se_inner_activation = se_inner_activation
    self._se_gating_activation = se_gating_activation
    self._depthwise_activation = depthwise_activation
    self._se_round_down_protect = se_round_down_protect
    self._kernel_initializer = kernel_initializer
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._expand_se_in_filters = expand_se_in_filters
    self._output_intermediate_endpoints = output_intermediate_endpoints
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    if not depthwise_activation:
      self._depthwise_activation = activation
    if regularize_depthwise:
      self._depthsize_regularizer = kernel_regularizer
    else:
      self._depthsize_regularizer = None

  def build(self, input_shape):
    expand_filters = self._in_filters
    if self._expand_ratio > 1:
      # First 1x1 conv for channel expansion.
      expand_filters = nn_layers.make_divisible(
          self._in_filters * self._expand_ratio, self._divisible_by)

      expand_kernel = 1 if self._use_depthwise else self._kernel_size
      expand_stride = 1 if self._use_depthwise else self._strides

      self._conv0 = tf_keras.layers.Conv2D(
          filters=expand_filters,
          kernel_size=expand_kernel,
          strides=expand_stride,
          padding='same',
          use_bias=False,
          kernel_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer)
      self._norm0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn,
      )
      self._activation_layer = tf_utils.get_activation(
          self._activation, use_keras_layer=True)

    if self._use_depthwise:
      # Depthwise conv.
      self._conv1 = tf_keras.layers.DepthwiseConv2D(
          kernel_size=(self._kernel_size, self._kernel_size),
          strides=self._strides,
          padding='same',
          depth_multiplier=1,
          dilation_rate=self._dilation_rate,
          use_bias=False,
          depthwise_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          depthwise_regularizer=self._depthsize_regularizer,
          bias_regularizer=self._bias_regularizer)
      self._norm1 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn,
      )
      self._depthwise_activation_layer = tf_utils.get_activation(
          self._depthwise_activation, use_keras_layer=True)

    # Squeeze and excitation.
    if self._se_ratio and self._se_ratio > 0 and self._se_ratio <= 1:
      logging.info('Use Squeeze and excitation.')
      in_filters = self._in_filters
      if self._expand_se_in_filters:
        in_filters = expand_filters
      self._squeeze_excitation = nn_layers.SqueezeExcitation(
          in_filters=in_filters,
          out_filters=expand_filters,
          se_ratio=self._se_ratio,
          divisible_by=self._divisible_by,
          round_down_protect=self._se_round_down_protect,
          kernel_initializer=tf_utils.clone_initializer(
              self._kernel_initializer),
          kernel_regularizer=self._kernel_regularizer,
          bias_regularizer=self._bias_regularizer,
          activation=self._se_inner_activation,
          gating_activation=self._se_gating_activation)
    else:
      self._squeeze_excitation = None

    # Last 1x1 conv.
    self._conv2 = tf_keras.layers.Conv2D(
        filters=self._out_filters,
        kernel_size=1,
        strides=1,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm2 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = None
    self._add = tf_keras.layers.Add()

    super(InvertedBottleneckBlock, self).build(input_shape)

  def get_config(self):
    config = {
        'in_filters': self._in_filters,
        'out_filters': self._out_filters,
        'expand_ratio': self._expand_ratio,
        'strides': self._strides,
        'kernel_size': self._kernel_size,
        'se_ratio': self._se_ratio,
        'divisible_by': self._divisible_by,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'se_inner_activation': self._se_inner_activation,
        'se_gating_activation': self._se_gating_activation,
        'se_round_down_protect': self._se_round_down_protect,
        'expand_se_in_filters': self._expand_se_in_filters,
        'depthwise_activation': self._depthwise_activation,
        'dilation_rate': self._dilation_rate,
        'use_sync_bn': self._use_sync_bn,
        'regularize_depthwise': self._regularize_depthwise,
        'use_depthwise': self._use_depthwise,
        'use_residual': self._use_residual,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'output_intermediate_endpoints': self._output_intermediate_endpoints
    }
    base_config = super(InvertedBottleneckBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, training=None):
    endpoints = {}
    shortcut = inputs
    if self._expand_ratio > 1:
      x = self._conv0(inputs)
      x = self._norm0(x)
      x = self._activation_layer(x)
    else:
      x = inputs

    if self._use_depthwise:
      x = self._conv1(x)
      x = self._norm1(x)
      x = self._depthwise_activation_layer(x)
      if self._output_intermediate_endpoints:
        endpoints['depthwise'] = x

    if self._squeeze_excitation:
      x = self._squeeze_excitation(x)

    x = self._conv2(x)
    x = self._norm2(x)

    if (self._use_residual and self._in_filters == self._out_filters and
        self._strides == 1):
      if self._stochastic_depth:
        x = self._stochastic_depth(x, training=training)
      x = self._add([x, shortcut])

    if self._output_intermediate_endpoints:
      return x, endpoints
    return x


@tf_keras.utils.register_keras_serializable(package='Vision')
class ResidualInner(tf_keras.layers.Layer):
  """Creates a single inner block of a residual.

  This corresponds to `F`/`G` functions in the RevNet paper:
  Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse.
  The Reversible Residual Network: Backpropagation Without Storing Activations.
  (https://arxiv.org/pdf/1707.04585.pdf)
  """

  def __init__(
      self,
      filters: int,
      strides: int,
      kernel_initializer: Union[str, Callable[
          ..., tf_keras.initializers.Initializer]] = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      activation: Union[str, Callable[..., tf.Tensor]] = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      batch_norm_first: bool = True,
      **kwargs):
    """Initializes a ResidualInner.

    Args:
      filters: An `int` of output filter size.
      strides: An `int` of stride size for convolution for the residual block.
      kernel_initializer: A `str` or `tf_keras.initializers.Initializer`
        instance for convolutional layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` for Conv2D.
      activation: A `str` or `callable` instance of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      batch_norm_first: A `bool` of whether to apply activation and batch norm
        before conv.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(ResidualInner, self).__init__(**kwargs)

    self.strides = strides
    self.filters = filters
    self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
    self._kernel_regularizer = kernel_regularizer
    self._activation = tf_keras.activations.get(activation)
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._batch_norm_first = batch_norm_first
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation_fn = tf_utils.get_activation(activation)

  def build(self, input_shape: tf.TensorShape):
    if self._batch_norm_first:
      self._batch_norm_0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn,
      )

    self._conv2d_1 = tf_keras.layers.Conv2D(
        filters=self.filters,
        kernel_size=3,
        strides=self.strides,
        use_bias=False,
        padding='same',
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer)

    self._batch_norm_1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )

    self._conv2d_2 = tf_keras.layers.Conv2D(
        filters=self.filters,
        kernel_size=3,
        strides=1,
        use_bias=False,
        padding='same',
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer)

    super(ResidualInner, self).build(input_shape)

  def get_config(self) -> Dict[str, Any]:
    config = {
        'filters': self.filters,
        'strides': self.strides,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'batch_norm_first': self._batch_norm_first,
    }
    base_config = super(ResidualInner, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self,
           inputs: tf.Tensor,
           training: Optional[bool] = None) -> tf.Tensor:
    x = inputs
    if self._batch_norm_first:
      x = self._batch_norm_0(x, training=training)
      x = self._activation_fn(x)
    x = self._conv2d_1(x)

    x = self._batch_norm_1(x, training=training)
    x = self._activation_fn(x)
    x = self._conv2d_2(x)
    return x


@tf_keras.utils.register_keras_serializable(package='Vision')
class BottleneckResidualInner(tf_keras.layers.Layer):
  """Creates a single inner block of a bottleneck.

  This corresponds to `F`/`G` functions in the RevNet paper:
  Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse.
  The Reversible Residual Network: Backpropagation Without Storing Activations.
  (https://arxiv.org/pdf/1707.04585.pdf)
  """

  def __init__(
      self,
      filters: int,
      strides: int,
      kernel_initializer: Union[str, Callable[
          ..., tf_keras.initializers.Initializer]] = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      activation: Union[str, Callable[..., tf.Tensor]] = 'relu',
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      batch_norm_first: bool = True,
      **kwargs):
    """Initializes a BottleneckResidualInner.

    Args:
      filters: An `int` number of filters for first 2 convolutions. Last Last,
        and thus the number of output channels from the bottlneck block is
        `4*filters`
      strides: An `int` of stride size for convolution for the residual block.
      kernel_initializer: A `str` or `tf_keras.initializers.Initializer`
        instance for convolutional layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` for Conv2D.
      activation: A `str` or `callable` instance of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      batch_norm_first: A `bool` of whether to apply activation and batch norm
        before conv.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(BottleneckResidualInner, self).__init__(**kwargs)

    self.strides = strides
    self.filters = filters
    self._kernel_initializer = tf_keras.initializers.get(kernel_initializer)
    self._kernel_regularizer = kernel_regularizer
    self._activation = tf_keras.activations.get(activation)
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._batch_norm_first = batch_norm_first
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation_fn = tf_utils.get_activation(activation)

  def build(self, input_shape: tf.TensorShape):
    if self._batch_norm_first:
      self._batch_norm_0 = self._norm(
          axis=self._bn_axis,
          momentum=self._norm_momentum,
          epsilon=self._norm_epsilon,
          synchronized=self._use_sync_bn,
      )
    self._conv2d_1 = tf_keras.layers.Conv2D(
        filters=self.filters,
        kernel_size=1,
        strides=self.strides,
        use_bias=False,
        padding='same',
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer)
    self._batch_norm_1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )
    self._conv2d_2 = tf_keras.layers.Conv2D(
        filters=self.filters,
        kernel_size=3,
        strides=1,
        use_bias=False,
        padding='same',
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer)
    self._batch_norm_2 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )
    self._conv2d_3 = tf_keras.layers.Conv2D(
        filters=self.filters * 4,
        kernel_size=1,
        strides=1,
        use_bias=False,
        padding='same',
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer)

    super(BottleneckResidualInner, self).build(input_shape)

  def get_config(self) -> Dict[str, Any]:
    config = {
        'filters': self.filters,
        'strides': self.strides,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon,
        'batch_norm_first': self._batch_norm_first,
    }
    base_config = super(BottleneckResidualInner, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self,
           inputs: tf.Tensor,
           training: Optional[bool] = None) -> tf.Tensor:
    x = inputs
    if self._batch_norm_first:
      x = self._batch_norm_0(x, training=training)
      x = self._activation_fn(x)
    x = self._conv2d_1(x)

    x = self._batch_norm_1(x, training=training)
    x = self._activation_fn(x)
    x = self._conv2d_2(x)

    x = self._batch_norm_2(x, training=training)
    x = self._activation_fn(x)
    x = self._conv2d_3(x)

    return x


@tf_keras.utils.register_keras_serializable(package='Vision')
class ReversibleLayer(tf_keras.layers.Layer):
  """Creates a reversible layer.

  Computes y1 = x1 + f(x2), y2 = x2 + g(y1), where f and g can be arbitrary
  layers that are stateless, which in this case are `ResidualInner` layers.
  """

  def __init__(self,
               f: tf_keras.layers.Layer,
               g: tf_keras.layers.Layer,
               manual_grads: bool = True,
               **kwargs):
    """Initializes a ReversibleLayer.

    Args:
      f: A `tf_keras.layers.Layer` instance of `f` inner block referred to in
        paper. Each reversible layer consists of two inner functions. For
        example, in RevNet the reversible residual consists of two f/g inner
        (bottleneck) residual functions. Where the input to the reversible layer
        is x, the input gets partitioned in the channel dimension and the
        forward pass follows (eq8): x = [x1; x2], z1 = x1 + f(x2), y2 = x2 +
        g(z1), y1 = stop_gradient(z1).
      g: A `tf_keras.layers.Layer` instance of `g` inner block referred to in
        paper. Detailed explanation same as above as `f` arg.
      manual_grads: A `bool` [Testing Only] of whether to manually take
        gradients as in Algorithm 1 or defer to autograd.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(ReversibleLayer, self).__init__(**kwargs)

    self._f = f
    self._g = g
    self._manual_grads = manual_grads

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._axis = -1
    else:
      self._axis = 1

  def get_config(self) -> Dict[str, Any]:
    config = {
        'f': self._f,
        'g': self._g,
        'manual_grads': self._manual_grads,
    }
    base_config = super(ReversibleLayer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def _ckpt_non_trainable_vars(self):
    self._f_non_trainable_vars = [
        v.read_value() for v in self._f.non_trainable_variables
    ]
    self._g_non_trainable_vars = [
        v.read_value() for v in self._g.non_trainable_variables
    ]

  def _load_ckpt_non_trainable_vars(self):
    for v, v_chkpt in zip(self._f.non_trainable_variables,
                          self._f_non_trainable_vars):
      v.assign(v_chkpt)
    for v, v_chkpt in zip(self._g.non_trainable_variables,
                          self._g_non_trainable_vars):
      v.assign(v_chkpt)

  def call(self,
           inputs: tf.Tensor,
           training: Optional[bool] = None) -> tf.Tensor:

    @tf.custom_gradient
    def reversible(
        x: tf.Tensor
    ) -> Tuple[tf.Tensor, Callable[[Any], Tuple[List[tf.Tensor],
                                                List[tf.Tensor]]]]:
      """Implements Algorithm 1 in the RevNet paper.

         Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse.
         The Reversible Residual Network: Backpropagation Without Storing
         Activations.
         (https://arxiv.org/pdf/1707.04585.pdf)

      Args:
        x: An input `tf.Tensor.

      Returns:
        y: The output [y1; y2] in Algorithm 1.
        grad_fn: A callable function that computes the gradients.
      """
      with tf.GradientTape() as fwdtape:
        fwdtape.watch(x)
        x1, x2 = tf.split(x, num_or_size_splits=2, axis=self._axis)
        f_x2 = self._f(x2, training=training)
        x1_down = _maybe_downsample(x1, f_x2.shape[self._axis], self._f.strides,
                                    self._axis)
        z1 = f_x2 + x1_down
        g_z1 = self._g(z1, training=training)
        x2_down = _maybe_downsample(x2, g_z1.shape[self._axis], self._f.strides,
                                    self._axis)
        y2 = x2_down + g_z1

        # Equation 8: https://arxiv.org/pdf/1707.04585.pdf
        # Decouple y1 and z1 so that their derivatives are different.
        y1 = tf.identity(z1)
        y = tf.concat([y1, y2], axis=self._axis)

        irreversible = ((self._f.strides != 1 or self._g.strides != 1) or
                        (y.shape[self._axis] != inputs.shape[self._axis]))

        # Checkpointing moving mean/variance for batch normalization layers
        # as they shouldn't be updated during the custom gradient pass of f/g.
        self._ckpt_non_trainable_vars()

      def grad_fn(
          dy: tf.Tensor,
          variables: Optional[List[tf.Variable]] = None,
      ) -> Tuple[List[tf.Tensor], List[tf.Tensor]]:
        """Given dy calculate (dy/dx)|_{x_{input}} using f/g."""
        if irreversible or not self._manual_grads:
          grads_combined = fwdtape.gradient(
              y, [x] + variables, output_gradients=dy)
          dx = grads_combined[0]
          grad_vars = grads_combined[1:]
        else:
          y1_nograd = tf.stop_gradient(y1)
          y2_nograd = tf.stop_gradient(y2)
          dy1, dy2 = tf.split(dy, num_or_size_splits=2, axis=self._axis)

          # Index mapping from self.f/g.trainable_variables to grad_fn
          # input `variables` kwarg so that we can reorder dwf + dwg
          # variable gradient list to match `variables` order.
          f_var_refs = [v.ref() for v in self._f.trainable_variables]
          g_var_refs = [v.ref() for v in self._g.trainable_variables]
          fg_var_refs = f_var_refs + g_var_refs
          self_to_var_index = [fg_var_refs.index(v.ref()) for v in variables]

          # Algorithm 1 in paper (line # documented in-line)
          z1 = y1_nograd  # line 2
          with tf.GradientTape() as gtape:
            gtape.watch(z1)
            g_z1 = self._g(z1, training=training)
          x2 = y2_nograd - g_z1  # line 3

          with tf.GradientTape() as ftape:
            ftape.watch(x2)
            f_x2 = self._f(x2, training=training)
          x1 = z1 - f_x2  # pylint: disable=unused-variable      # line 4

          # Compute gradients
          g_grads_combined = gtape.gradient(
              g_z1, [z1] + self._g.trainable_variables, output_gradients=dy2)
          dz1 = dy1 + g_grads_combined[0]  # line 5
          dwg = g_grads_combined[1:]  # line 9

          f_grads_combined = ftape.gradient(
              f_x2, [x2] + self._f.trainable_variables, output_gradients=dz1)
          dx2 = dy2 + f_grads_combined[0]  # line 6
          dwf = f_grads_combined[1:]  # line 8
          dx1 = dz1  # line 7

          # Pack the input and variable gradients.
          dx = tf.concat([dx1, dx2], axis=self._axis)
          grad_vars = dwf + dwg
          # Reorder gradients (trainable_variables to variables kwarg order)
          grad_vars = [grad_vars[i] for i in self_to_var_index]

          # Restore batch normalization moving mean/variance for correctness.
          self._load_ckpt_non_trainable_vars()

        return dx, grad_vars  # grad_fn end

      return y, grad_fn  # reversible end

    activations = reversible(inputs)
    return activations


@tf_keras.utils.register_keras_serializable(package='Vision')
class DepthwiseSeparableConvBlock(tf_keras.layers.Layer):
  """Creates a depthwise separable convolution block with batch normalization.
  """

  def __init__(
      self,
      filters: int,
      kernel_size: int = 3,
      strides: int = 1,
      regularize_depthwise=False,
      activation: Text = 'relu6',
      kernel_initializer: Text = 'VarianceScaling',
      kernel_regularizer: Optional[tf_keras.regularizers.Regularizer] = None,
      dilation_rate: int = 1,
      use_sync_bn: bool = False,
      norm_momentum: float = 0.99,
      norm_epsilon: float = 0.001,
      **kwargs):
    """Initializes a convolution block with batch normalization.

    Args:
      filters: An `int` number of filters for the first two convolutions. Note
        that the third and final convolution will use 4 times as many filters.
      kernel_size: An `int` that specifies the height and width of the 2D
        convolution window.
      strides: An `int` of block stride. If greater than 1, this block will
        ultimately downsample the input.
      regularize_depthwise: A `bool`. If Ture, apply regularization on
        depthwise.
      activation: A `str` name of the activation function.
      kernel_initializer: A `str` of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      dilation_rate: An `int` or tuple/list of 2 `int`, specifying the dilation
        rate to use for dilated convolution. Can be a single integer to specify
        the same value for all spatial dimensions.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(DepthwiseSeparableConvBlock, self).__init__(**kwargs)
    self._filters = filters
    self._kernel_size = kernel_size
    self._strides = strides
    self._activation = activation
    self._regularize_depthwise = regularize_depthwise
    self._kernel_initializer = kernel_initializer
    self._kernel_regularizer = kernel_regularizer
    self._dilation_rate = dilation_rate
    self._use_sync_bn = use_sync_bn
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1
    self._activation_fn = tf_utils.get_activation(activation)
    if regularize_depthwise:
      self._depthsize_regularizer = kernel_regularizer
    else:
      self._depthsize_regularizer = None

  def get_config(self):
    config = {
        'filters': self._filters,
        'strides': self._strides,
        'regularize_depthwise': self._regularize_depthwise,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(DepthwiseSeparableConvBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def build(self, input_shape):

    self._dwconv0 = tf_keras.layers.DepthwiseConv2D(
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding='same',
        depth_multiplier=1,
        dilation_rate=self._dilation_rate,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._depthsize_regularizer,
        use_bias=False)
    self._norm0 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )

    self._conv1 = tf_keras.layers.Conv2D(
        filters=self._filters,
        kernel_size=1,
        strides=1,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer)
    self._norm1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )

    super(DepthwiseSeparableConvBlock, self).build(input_shape)

  def call(self, inputs, training=None):
    x = self._dwconv0(inputs)
    x = self._norm0(x)
    x = self._activation_fn(x)

    x = self._conv1(x)
    x = self._norm1(x)
    return self._activation_fn(x)


@tf_keras.utils.register_keras_serializable(package='Vision')
class TuckerConvBlock(tf_keras.layers.Layer):
  """An Tucker block (generalized bottleneck)."""

  def __init__(self,
               in_filters,
               out_filters,
               input_compression_ratio,
               output_compression_ratio,
               strides,
               kernel_size=3,
               stochastic_depth_drop_rate=None,
               kernel_initializer='VarianceScaling',
               kernel_regularizer=None,
               bias_regularizer=None,
               activation='relu',
               use_sync_bn=False,
               divisible_by=1,
               use_residual=True,
               norm_momentum=0.99,
               norm_epsilon=0.001,
               **kwargs):
    """Initializes an inverted bottleneck block with BN after convolutions.

    Args:
      in_filters: An `int` number of filters of the input tensor.
      out_filters: An `int` number of filters of the output tensor.
      input_compression_ratio: An `float` of compression ratio for input
        filters.
      output_compression_ratio: An `float` of compression ratio for output
        filters.
      strides: An `int` block stride. If greater than 1, this block will
        ultimately downsample the input.
      kernel_size: An `int` kernel_size of the depthwise conv layer.
      stochastic_depth_drop_rate: A `float` or None. if not None, drop rate for
        the stochastic depth layer.
      kernel_initializer: A `str` of kernel_initializer for convolutional
        layers.
      kernel_regularizer: A `tf_keras.regularizers.Regularizer` object for
        Conv2D. Default to None.
      bias_regularizer: A `tf_keras.regularizers.Regularizer` object for Conv2d.
        Default to None.
      activation: A `str` name of the activation function.
      use_sync_bn: A `bool`. If True, use synchronized batch normalization.
      divisible_by: An `int` that ensures all inner dimensions are divisible by
        this number.
      use_residual: A `bool` of whether to include residual connection between
        input and output.
      norm_momentum: A `float` of normalization momentum for the moving average.
      norm_epsilon: A `float` added to variance to avoid dividing by zero.
      **kwargs: Additional keyword arguments to be passed.
    """
    super(TuckerConvBlock, self).__init__(**kwargs)

    self._in_filters = in_filters
    self._out_filters = out_filters
    self._input_compression_ratio = input_compression_ratio
    self._output_compression_ratio = output_compression_ratio
    self._strides = strides
    self._kernel_size = kernel_size
    self._divisible_by = divisible_by
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._use_sync_bn = use_sync_bn
    self._use_residual = use_residual
    self._activation = activation
    self._kernel_initializer = kernel_initializer
    self._norm_momentum = norm_momentum
    self._norm_epsilon = norm_epsilon
    self._kernel_regularizer = kernel_regularizer
    self._bias_regularizer = bias_regularizer
    self._norm = tf_keras.layers.BatchNormalization

    if tf_keras.backend.image_data_format() == 'channels_last':
      self._bn_axis = -1
    else:
      self._bn_axis = 1

  def build(self, input_shape):
    input_compressed_filters = nn_layers.make_divisible(
        value=self._in_filters * self._input_compression_ratio,
        divisor=self._divisible_by,
        round_down_protect=False)

    self._conv0 = tf_keras.layers.Conv2D(
        filters=input_compressed_filters,
        kernel_size=1,
        strides=1,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm0 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )
    self._activation_layer0 = tf_utils.get_activation(
        self._activation, use_keras_layer=True)

    output_compressed_filters = nn_layers.make_divisible(
        value=self._out_filters * self._output_compression_ratio,
        divisor=self._divisible_by,
        round_down_protect=False)

    self._conv1 = tf_keras.layers.Conv2D(
        filters=output_compressed_filters,
        kernel_size=self._kernel_size,
        strides=self._strides,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm1 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )
    self._activation_layer1 = tf_utils.get_activation(
        self._activation, use_keras_layer=True)

    # Last 1x1 conv.
    self._conv2 = tf_keras.layers.Conv2D(
        filters=self._out_filters,
        kernel_size=1,
        strides=1,
        padding='same',
        use_bias=False,
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer)
    self._norm2 = self._norm(
        axis=self._bn_axis,
        momentum=self._norm_momentum,
        epsilon=self._norm_epsilon,
        synchronized=self._use_sync_bn,
    )

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = None
    self._add = tf_keras.layers.Add()

    super(TuckerConvBlock, self).build(input_shape)

  def get_config(self):
    config = {
        'in_filters': self._in_filters,
        'out_filters': self._out_filters,
        'input_compression_ratio': self._input_compression_ratio,
        'output_compression_ratio': self._output_compression_ratio,
        'strides': self._strides,
        'kernel_size': self._kernel_size,
        'divisible_by': self._divisible_by,
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'kernel_initializer': self._kernel_initializer,
        'kernel_regularizer': self._kernel_regularizer,
        'bias_regularizer': self._bias_regularizer,
        'activation': self._activation,
        'use_sync_bn': self._use_sync_bn,
        'use_residual': self._use_residual,
        'norm_momentum': self._norm_momentum,
        'norm_epsilon': self._norm_epsilon
    }
    base_config = super(TuckerConvBlock, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs, training=None):
    shortcut = inputs

    x = self._conv0(inputs)
    x = self._norm0(x)
    x = self._activation_layer0(x)

    x = self._conv1(x)
    x = self._norm1(x)
    x = self._activation_layer1(x)

    x = self._conv2(x)
    x = self._norm2(x)

    if (self._use_residual and self._in_filters == self._out_filters and
        self._strides == 1):
      if self._stochastic_depth:
        x = self._stochastic_depth(x, training=training)
      x = self._add([x, shortcut])

    return x


@tf_keras.utils.register_keras_serializable(package='Vision')
class LayerScale(tf_keras.layers.Layer):
  """LayerScale as introduced in CaiT: https://arxiv.org/abs/2103.17239.

  Attributes:
      init_values (float): value to initialize the diagonal matrix of
        LayerScale.
  """

  def __init__(self, init_values: float, **kwargs):
    """Initializes LayerScale."""
    super().__init__(**kwargs)
    self.gamma_init_value = init_values

  def build(self, inputs_shape):
    gamma_shape = (1, 1, inputs_shape[2])
    self.gamma = self.add_weight(
        name='layerscale_gamma',
        shape=gamma_shape,
        initializer=tf_keras.initializers.Constant(self.gamma_init_value),
        trainable=True,
        dtype=tf.float32,
    )

  def call(self, inputs, inputs_positions=None):
    del inputs_positions
    return tf.cast(self.gamma, inputs.dtype) * inputs


@tf_keras.utils.register_keras_serializable(package='Vision')
class TransformerEncoderBlock(nlp_modeling.layers.TransformerEncoderBlock):
  """TransformerEncoderBlock layer with stochastic depth and layerscale."""

  def __init__(
      self,
      *args,
      stochastic_depth_drop_rate=0.0,
      layer_scale_init_value=0.0,
      transformer_partition_dims=None,
      max_attention_inference_parallelism=None,
      **kwargs
  ):
    """Initializes TransformerEncoderBlock.

    Args:
      *args: positional arguments passed to super().__init__.
      stochastic_depth_drop_rate: the drop rate for the stochastic depth layer.
      layer_scale_init_value:
      transformer_partition_dims: transformer spatial partition dimenstions.
      max_attention_inference_parallelism: the number of examples to run in
        parallel in the attention blocks during inference. Set this limit to
        reduce the peak memory usage. If None, use vectorized operations to run
        the whole batch in parallel.
      **kwargs: keyword arguments passed to super().__init__.
    """
    super().__init__(*args, **kwargs)
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._layer_scale_init_value = layer_scale_init_value
    self._transformer_partition_dims = transformer_partition_dims
    self._max_attention_inference_parallelism = (
        max_attention_inference_parallelism
    )

  def build(self, input_shape):
    super().build(input_shape)

    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = lambda x, *args, **kwargs: tf.identity(x)

    if self._layer_scale_init_value:
      self._layer_scale_attn = LayerScale(
          init_values=self._layer_scale_init_value, name='layer_scale_attn')
      self._layer_scale_mlp = LayerScale(
          init_values=self._layer_scale_init_value, name='layer_scale_mlp')
    else:
      self._layer_scale_attn = lambda x, *args, **kwargs: tf.identity(x)
      self._layer_scale_mlp = lambda x, *args, **kwargs: tf.identity(x)

    self._attention_layer = nn_layers.MultiHeadAttention(
        num_heads=self._num_heads,
        key_dim=self._key_dim,
        value_dim=self._value_dim,
        dropout=self._attention_dropout_rate,
        use_bias=self._use_bias,
        kernel_initializer=self._attention_initializer,
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
        attention_axes=self._attention_axes,
        output_shape=self._output_last_dim,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        max_inference_parallelism=self._max_attention_inference_parallelism,
        partition_dims=self._transformer_partition_dims,
        name='self_attention',
    )

  def get_config(self):
    config = super().get_config()
    config.update({
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'layer_scale_init_value': self._layer_scale_init_value,
        'transformer_partition_dims': self._transformer_partition_dims,
        'max_attention_inference_parallelism': (
            self._max_attention_inference_parallelism
        ),
    })
    return config

  def call(self, inputs, output_range=None, training=None):
    """Transformer self-attention encoder block call."""
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError('Unexpected inputs to %s with length at %d' %
                         (self.__class__, len(inputs)))
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    if output_range is None:
      output_range = self._output_range
    if output_range:
      if self._norm_first:
        source_tensor = input_tensor[:, 0:output_range, :]
        input_tensor = self._attention_layer_norm(input_tensor)
        if key_value is not None:
          key_value = self._attention_layer_norm(key_value)
      target_tensor = input_tensor[:, 0:output_range, :]
      if attention_mask is not None:
        attention_mask = attention_mask[:, 0:output_range, :]
    else:
      if self._norm_first:
        source_tensor = input_tensor
        input_tensor = self._attention_layer_norm(input_tensor)
        if key_value is not None:
          key_value = self._attention_layer_norm(key_value)
      target_tensor = input_tensor

    if key_value is None:
      key_value = input_tensor

    attention_output, attention_scores = self._attention_layer(
        query=target_tensor,
        value=key_value,
        attention_mask=attention_mask,
        return_attention_scores=True)
    attention_output = self._attention_dropout(attention_output)

    attention_output = self._layer_scale_attn(attention_output)

    if self._norm_first:
      # Important to not combine `self._norm_first` and
      # `self._use_query_residual` into one if clause because else is only for
      # `_norm_first == False`.
      if self._use_query_residual:
        attention_output = source_tensor + self._stochastic_depth(
            attention_output, training=training)
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
    else:
      if self._use_query_residual:
        attention_output = target_tensor + self._stochastic_depth(
            attention_output, training=training)
      attention_output = self._attention_layer_norm(attention_output)

    inner_output = self._intermediate_dense(attention_output)
    inner_output = self._intermediate_activation_layer(inner_output)
    inner_output = self._inner_dropout_layer(inner_output)
    layer_output = self._output_dense(inner_output)
    layer_output = self._output_dropout(layer_output)

    # Layerscale after MLP.
    layer_output = self._layer_scale_mlp(layer_output)

    if self._norm_first:
      layer_output = source_attention_output + self._stochastic_depth(
          layer_output, training=training)
    else:
      # During mixed precision training, layer norm output is always fp32 for
      # now. Casts fp32 for the subsequent add.
      layer_output = tf.cast(layer_output, tf.float32)
      layer_output = self._output_layer_norm(
          layer_output
          + self._stochastic_depth(attention_output, training=training))

    if self._return_attention_scores:
      return layer_output, attention_scores
    else:
      return layer_output


@tf_keras.utils.register_keras_serializable(package='Vision')
class TransformerScaffold(nlp_modeling.layers.TransformerScaffold):
  """TransformerScaffold layer for vision applications."""

  def __init__(
      self,
      *args,
      stochastic_depth_drop_rate: float = 0.0,
      return_attention_scores: bool = False,
      ffn_has_residual_connection: bool = False,
      max_attention_inference_parallelism: Optional[int] = None,
      **kwargs
  ):
    """Initializes TransformerEncoderBlock.

    Args:
      *args: positional arguments passed to super().__init__.
      stochastic_depth_drop_rate: the drop rate for the stochastic depth layer.
      return_attention_scores: whether to return the attention output.
      ffn_has_residual_connection: whether the feedforward network has internal
        residual connection and layer norm. If False, the residual connection
        and the layer norm op are called inside TransformerScaffold.
      max_attention_inference_parallelism: the number of examples to run in
        parallel in the attention blocks during inference. Set this limit to
        reduce the peak memory usage. If None, use vectorized operations to run
        the whole batch in parallel.
      **kwargs: keyword arguments passed to super().__init__.
    """
    super().__init__(*args, **kwargs)
    self._stochastic_depth_drop_rate = stochastic_depth_drop_rate
    self._return_attention_scores = return_attention_scores
    self._ffn_has_residual_connection = ffn_has_residual_connection
    self._max_attention_inference_parallelism = (
        max_attention_inference_parallelism
    )

  def build(self, input_shape: Union[tf.TensorShape, List[int]]):
    if self._stochastic_depth_drop_rate:
      self._stochastic_depth = nn_layers.StochasticDepth(
          self._stochastic_depth_drop_rate)
    else:
      self._stochastic_depth = lambda x, *args, **kwargs: tf.identity(x)

    super().build(input_shape)

    if self._max_attention_inference_parallelism is not None:
      attention_layer_config = self._attention_layer.get_config()
      self._attention_layer = self._attention_cls.from_config({
          **attention_layer_config,
          'max_inference_parallelism': (
              self._max_attention_inference_parallelism
          ),
      })

  def get_config(self):
    config = super().get_config()
    config.update({
        'stochastic_depth_drop_rate': self._stochastic_depth_drop_rate,
        'return_attention_scores': self._return_attention_scores,
        'ffn_has_residual_connection': self._ffn_has_residual_connection,
        'max_attention_inference_parallelism': (
            self._max_attention_inference_parallelism
        ),
    })
    return config

  def call(
      self,
      inputs: tf.Tensor,
      training: Optional[bool] = None
  ) -> Union[tf.Tensor, Tuple[tf.Tensor, tf.Tensor]]:
    """Transformer self-attention encoder block call."""
    if isinstance(inputs, (list, tuple)):
      if len(inputs) == 2:
        input_tensor, attention_mask = inputs
        key_value = None
      elif len(inputs) == 3:
        input_tensor, key_value, attention_mask = inputs
      else:
        raise ValueError('Unexpected inputs to %s with length at %d' %
                         (self.__class__, len(inputs)))
    else:
      input_tensor, key_value, attention_mask = (inputs, None, None)

    if self._norm_first:
      source_tensor = input_tensor
      input_tensor = self._attention_layer_norm(input_tensor)

    if key_value is None:
      key_value = input_tensor

    attention_output, attention_scores = self._attention_layer(
        query=input_tensor,
        value=key_value,
        attention_mask=attention_mask,
        training=training,
        return_attention_scores=True)
    attention_output = self._attention_dropout(
        attention_output, training=training)

    if self._norm_first:
      source_attention_output = source_tensor + self._stochastic_depth(
          attention_output, training=training)
      attention_output = self._output_layer_norm(
          source_attention_output)
    else:
      attention_output = self._attention_layer_norm(
          input_tensor +
          self._stochastic_depth(attention_output, training=training))

    if self._feedforward_block is None:
      intermediate_output = self._intermediate_dense(attention_output)
      intermediate_output = self._intermediate_activation_layer(
          intermediate_output)
      layer_output = self._output_dense(intermediate_output)
      layer_output = self._output_dropout(layer_output, training=training)
    else:
      layer_output = self._feedforward_block(
          attention_output, training=training)

    if self._norm_first:
      if self._ffn_has_residual_connection:
        raise ValueError(
            'In the case of `norm_first`, the residual connection should be'
            "done in the TransformerScaffold call function, not FFN's"
            'call function.')
      output = source_attention_output + self._stochastic_depth(
          layer_output, training=training)
    else:
      # During mixed precision training, layer norm output is always fp32 for
      # now. Casts fp32 for the subsequent add.
      layer_output = tf.cast(layer_output, tf.float32)
      if self._ffn_has_residual_connection:
        output = self._stochastic_depth(layer_output, training=training)
      else:
        output = self._output_layer_norm(
            attention_output +
            self._stochastic_depth(layer_output, training=training))

    if self._return_attention_scores:
      return output, attention_scores
    else:
      return output