Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for TFM actions.""" | |
import os | |
from absl.testing import parameterized | |
import numpy as np | |
import orbit | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.distribute import combinations | |
from tensorflow.python.distribute import strategy_combinations | |
from official.core import actions | |
from official.modeling import optimization | |
class TestModel(tf_keras.Model): | |
def __init__(self): | |
super().__init__() | |
self.value = tf.Variable(0.0) | |
self.dense = tf_keras.layers.Dense(2) | |
_ = self.dense(tf.zeros((2, 2), tf.float32)) | |
def call(self, x, training=None): | |
return self.value + x | |
class ActionsTest(tf.test.TestCase, parameterized.TestCase): | |
def test_ema_checkpointing(self, distribution): | |
with distribution.scope(): | |
directory = self.create_tempdir() | |
model = TestModel() | |
optimizer = tf_keras.optimizers.SGD() | |
optimizer = optimization.ExponentialMovingAverage( | |
optimizer, trainable_weights_only=False) | |
# Creats average weights for the model variables. Average weights are | |
# initialized to zero. | |
optimizer.shadow_copy(model) | |
checkpoint = tf.train.Checkpoint(model=model) | |
# Changes model.value to 3, average value is still 0. | |
model.value.assign(3) | |
# Checks model.value is 3 | |
self.assertEqual(model(0.), 3) | |
ema_action = actions.EMACheckpointing(directory, optimizer, checkpoint) | |
ema_action({}) | |
self.assertNotEmpty( | |
tf.io.gfile.glob(os.path.join(directory, 'ema_checkpoints'))) | |
checkpoint.read( | |
tf.train.latest_checkpoint( | |
os.path.join(directory, 'ema_checkpoints'))) | |
# Checks model.value is 0 after swapping. | |
self.assertEqual(model(0.), 0) | |
# Raises an error for a normal optimizer. | |
with self.assertRaisesRegex(ValueError, | |
'Optimizer has to be instance of.*'): | |
_ = actions.EMACheckpointing(directory, tf_keras.optimizers.SGD(), | |
checkpoint) | |
def test_recovery_condition(self, distribution): | |
with distribution.scope(): | |
global_step = orbit.utils.create_global_step() | |
recover_condition = actions.RecoveryCondition( | |
global_step, loss_upper_bound=0.5, recovery_max_trials=2) | |
outputs = {'training_loss': 0.6} | |
self.assertTrue(recover_condition(outputs)) | |
self.assertTrue(recover_condition(outputs)) | |
with self.assertRaises(RuntimeError): | |
recover_condition(outputs) | |
global_step = orbit.utils.create_global_step() | |
recover_condition = actions.RecoveryCondition( | |
global_step, loss_upper_bound=0.5, recovery_max_trials=2) | |
outputs = {'training_loss': tf.constant([np.nan], tf.float32)} | |
self.assertTrue(recover_condition(outputs)) | |
self.assertTrue(recover_condition(outputs)) | |
with self.assertRaises(RuntimeError): | |
recover_condition(outputs) | |
def test_pruning(self, distribution): | |
with distribution.scope(): | |
directory = self.get_temp_dir() | |
model = TestModel() | |
optimizer = tf_keras.optimizers.SGD() | |
pruning = actions.PruningAction(directory, model, optimizer) | |
pruning({}) | |
if __name__ == '__main__': | |
tf.test.main() | |