Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.core.train_utils.""" | |
import json | |
import os | |
import pprint | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.core import exp_factory | |
from official.core import test_utils | |
from official.core import train_utils | |
from official.modeling import hyperparams | |
def foo(): | |
"""Multitask experiment for test.""" | |
experiment_config = hyperparams.Config( | |
default_params={ | |
'runtime': { | |
'tpu': 'fake', | |
}, | |
'task': { | |
'model': { | |
'model_id': 'bar', | |
}, | |
}, | |
'trainer': { | |
'train_steps': -1, | |
'validation_steps': -1, | |
}, | |
}) | |
return experiment_config | |
class TrainUtilsTest(tf.test.TestCase): | |
def test_get_leaf_nested_dict(self): | |
d = {'a': {'i': {'x': 5}}} | |
self.assertEqual(train_utils.get_leaf_nested_dict(d, ['a', 'i', 'x']), 5) | |
def test_get_leaf_nested_dict_not_leaf(self): | |
with self.assertRaisesRegex(KeyError, 'The value extracted with keys.*'): | |
d = {'a': {'i': {'x': 5}}} | |
train_utils.get_leaf_nested_dict(d, ['a', 'i']) | |
def test_get_leaf_nested_dict_path_not_exist_missing_key(self): | |
with self.assertRaisesRegex(KeyError, 'Path not exist while traversing .*'): | |
d = {'a': {'i': {'x': 5}}} | |
train_utils.get_leaf_nested_dict(d, ['a', 'i', 'y']) | |
def test_get_leaf_nested_dict_path_not_exist_out_of_range(self): | |
with self.assertRaisesRegex(KeyError, 'Path not exist while traversing .*'): | |
d = {'a': {'i': {'x': 5}}} | |
train_utils.get_leaf_nested_dict(d, ['a', 'i', 'z']) | |
def test_get_leaf_nested_dict_path_not_exist_meets_leaf(self): | |
with self.assertRaisesRegex(KeyError, 'Path not exist while traversing .*'): | |
d = {'a': {'i': 5}} | |
train_utils.get_leaf_nested_dict(d, ['a', 'i', 'z']) | |
def test_cast_leaf_nested_dict(self): | |
d = {'a': {'i': {'x': '123'}}, 'b': 456.5} | |
d = train_utils.cast_leaf_nested_dict(d, int) | |
self.assertEqual(d['a']['i']['x'], 123) | |
self.assertEqual(d['b'], 456) | |
def test_write_model_params_keras_model(self): | |
inputs = np.zeros([2, 3]) | |
model = test_utils.FakeKerasModel() | |
model(inputs) # Must do forward pass to build the model. | |
filepath = os.path.join(self.create_tempdir(), 'model_params.txt') | |
train_utils.write_model_params(model, filepath) | |
actual = tf.io.gfile.GFile(filepath, 'r').read().splitlines() | |
expected = [ | |
'fake_keras_model/dense/kernel:0 [3, 4]', | |
'fake_keras_model/dense/bias:0 [4]', | |
'fake_keras_model/dense_1/kernel:0 [4, 4]', | |
'fake_keras_model/dense_1/bias:0 [4]', | |
'', | |
'Total params: 36', | |
] | |
self.assertEqual(actual, expected) | |
def test_write_model_params_module(self): | |
inputs = np.zeros([2, 3], dtype=np.float32) | |
model = test_utils.FakeModule(3, name='fake_module') | |
model(inputs) # Must do forward pass to build the model. | |
filepath = os.path.join(self.create_tempdir(), 'model_params.txt') | |
train_utils.write_model_params(model, filepath) | |
actual = tf.io.gfile.GFile(filepath, 'r').read().splitlines() | |
expected = [ | |
'fake_module/dense/b:0 [4]', | |
'fake_module/dense/w:0 [3, 4]', | |
'fake_module/dense_1/b:0 [4]', | |
'fake_module/dense_1/w:0 [4, 4]', | |
'', | |
'Total params: 36', | |
] | |
self.assertEqual(actual, expected) | |
def test_construct_experiment_from_flags(self): | |
options = train_utils.ParseConfigOptions( | |
experiment='foo', | |
config_file=[], | |
tpu='bar', | |
tf_data_service='', | |
params_override='task.model.model_id=new,' | |
'trainer.train_steps=10,' | |
'trainer.validation_steps=11') | |
builder = train_utils.ExperimentParser(options) | |
params_from_obj = builder.parse() | |
params_from_func = train_utils.parse_configuration(options) | |
pp = pprint.PrettyPrinter() | |
self.assertEqual( | |
pp.pformat(params_from_obj.as_dict()), | |
pp.pformat(params_from_func.as_dict())) | |
self.assertEqual(params_from_obj.runtime.tpu, 'bar') | |
self.assertEqual(params_from_obj.task.model.model_id, 'new') | |
self.assertEqual(params_from_obj.trainer.train_steps, 10) | |
self.assertEqual(params_from_obj.trainer.validation_steps, 11) | |
class BestCheckpointExporterTest(tf.test.TestCase): | |
def test_maybe_export(self): | |
model_dir = self.create_tempdir().full_path | |
best_ckpt_path = os.path.join(model_dir, 'best_ckpt-1') | |
metric_name = 'test_metric|metric_1' | |
exporter = train_utils.BestCheckpointExporter( | |
model_dir, metric_name, 'higher') | |
v = tf.Variable(1.0) | |
checkpoint = tf.train.Checkpoint(v=v) | |
ret = exporter.maybe_export_checkpoint( | |
checkpoint, {'test_metric': {'metric_1': 5.0}}, 100) | |
with self.subTest(name='Successful first save.'): | |
self.assertEqual(ret, True) | |
v_2 = tf.Variable(2.0) | |
checkpoint_2 = tf.train.Checkpoint(v=v_2) | |
checkpoint_2.restore(best_ckpt_path) | |
self.assertEqual(v_2.numpy(), 1.0) | |
v = tf.Variable(3.0) | |
checkpoint = tf.train.Checkpoint(v=v) | |
ret = exporter.maybe_export_checkpoint( | |
checkpoint, {'test_metric': {'metric_1': 6.0}}, 200) | |
with self.subTest(name='Successful better metic save.'): | |
self.assertEqual(ret, True) | |
v_2 = tf.Variable(2.0) | |
checkpoint_2 = tf.train.Checkpoint(v=v_2) | |
checkpoint_2.restore(best_ckpt_path) | |
self.assertEqual(v_2.numpy(), 3.0) | |
v = tf.Variable(5.0) | |
checkpoint = tf.train.Checkpoint(v=v) | |
ret = exporter.maybe_export_checkpoint( | |
checkpoint, {'test_metric': {'metric_1': 1.0}}, 300) | |
with self.subTest(name='Worse metic no save.'): | |
self.assertEqual(ret, False) | |
v_2 = tf.Variable(2.0) | |
checkpoint_2 = tf.train.Checkpoint(v=v_2) | |
checkpoint_2.restore(best_ckpt_path) | |
self.assertEqual(v_2.numpy(), 3.0) | |
def test_export_best_eval_metric(self): | |
model_dir = self.create_tempdir().full_path | |
metric_name = 'test_metric|metric_1' | |
exporter = train_utils.BestCheckpointExporter(model_dir, metric_name, | |
'higher') | |
exporter.export_best_eval_metric({'test_metric': {'metric_1': 5.0}}, 100) | |
with tf.io.gfile.GFile(os.path.join(model_dir, 'info.json'), | |
'rb') as reader: | |
metric = json.loads(reader.read()) | |
self.assertAllEqual( | |
metric, | |
{'test_metric': {'metric_1': 5.0}, 'best_ckpt_global_step': 100.0}) | |
def test_export_best_eval_metric_skips_non_scalar_values(self): | |
model_dir = self.create_tempdir().full_path | |
metric_name = 'test_metric|metric_1' | |
exporter = train_utils.BestCheckpointExporter(model_dir, metric_name, | |
'higher') | |
image = tf.zeros(shape=[16, 8, 1]) | |
eval_logs = {'test_metric': {'metric_1': 5.0, 'image': image}} | |
exporter.export_best_eval_metric(eval_logs, 100) | |
with tf.io.gfile.GFile(os.path.join(model_dir, 'info.json'), | |
'rb') as reader: | |
metric = json.loads(reader.read()) | |
self.assertAllEqual( | |
metric, | |
{'test_metric': {'metric_1': 5.0}, 'best_ckpt_global_step': 100.0}) | |
if __name__ == '__main__': | |
tf.test.main() | |