Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Run BERT on SQuAD 1.1 and SQuAD 2.0 in TF 2.x.""" | |
import json | |
import os | |
import time | |
# Import libraries | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import gin | |
import tensorflow as tf, tf_keras | |
from official.common import distribute_utils | |
from official.legacy.bert import configs as bert_configs | |
from official.legacy.bert import run_squad_helper | |
from official.nlp.data import squad_lib as squad_lib_wp | |
from official.nlp.tools import tokenization | |
from official.utils.misc import keras_utils | |
flags.DEFINE_string('vocab_file', None, | |
'The vocabulary file that the BERT model was trained on.') | |
# More flags can be found in run_squad_helper. | |
run_squad_helper.define_common_squad_flags() | |
FLAGS = flags.FLAGS | |
def train_squad(strategy, | |
input_meta_data, | |
custom_callbacks=None, | |
run_eagerly=False, | |
init_checkpoint=None, | |
sub_model_export_name=None): | |
"""Run bert squad training.""" | |
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
init_checkpoint = init_checkpoint or FLAGS.init_checkpoint | |
run_squad_helper.train_squad(strategy, input_meta_data, bert_config, | |
custom_callbacks, run_eagerly, init_checkpoint, | |
sub_model_export_name=sub_model_export_name) | |
def predict_squad(strategy, input_meta_data): | |
"""Makes predictions for the squad dataset.""" | |
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
run_squad_helper.predict_squad( | |
strategy, input_meta_data, tokenizer, bert_config, squad_lib_wp) | |
def eval_squad(strategy, input_meta_data): | |
"""Evaluate on the squad dataset.""" | |
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
tokenizer = tokenization.FullTokenizer( | |
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) | |
eval_metrics = run_squad_helper.eval_squad( | |
strategy, input_meta_data, tokenizer, bert_config, squad_lib_wp) | |
return eval_metrics | |
def export_squad(model_export_path, input_meta_data): | |
"""Exports a trained model as a `SavedModel` for inference. | |
Args: | |
model_export_path: a string specifying the path to the SavedModel directory. | |
input_meta_data: dictionary containing meta data about input and model. | |
Raises: | |
Export path is not specified, got an empty string or None. | |
""" | |
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file) | |
run_squad_helper.export_squad(model_export_path, input_meta_data, bert_config) | |
def main(_): | |
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param) | |
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader: | |
input_meta_data = json.loads(reader.read().decode('utf-8')) | |
if FLAGS.mode == 'export_only': | |
export_squad(FLAGS.model_export_path, input_meta_data) | |
return | |
# Configures cluster spec for multi-worker distribution strategy. | |
if FLAGS.num_gpus > 0: | |
_ = distribute_utils.configure_cluster(FLAGS.worker_hosts, FLAGS.task_index) | |
strategy = distribute_utils.get_distribution_strategy( | |
distribution_strategy=FLAGS.distribution_strategy, | |
num_gpus=FLAGS.num_gpus, | |
all_reduce_alg=FLAGS.all_reduce_alg, | |
tpu_address=FLAGS.tpu) | |
if 'train' in FLAGS.mode: | |
if FLAGS.log_steps: | |
custom_callbacks = [keras_utils.TimeHistory( | |
batch_size=FLAGS.train_batch_size, | |
log_steps=FLAGS.log_steps, | |
logdir=FLAGS.model_dir, | |
)] | |
else: | |
custom_callbacks = None | |
train_squad( | |
strategy, | |
input_meta_data, | |
custom_callbacks=custom_callbacks, | |
run_eagerly=FLAGS.run_eagerly, | |
sub_model_export_name=FLAGS.sub_model_export_name, | |
) | |
if 'predict' in FLAGS.mode: | |
predict_squad(strategy, input_meta_data) | |
if 'eval' in FLAGS.mode: | |
eval_metrics = eval_squad(strategy, input_meta_data) | |
f1_score = eval_metrics['final_f1'] | |
logging.info('SQuAD eval F1-score: %f', f1_score) | |
summary_dir = os.path.join(FLAGS.model_dir, 'summaries', 'eval') | |
summary_writer = tf.summary.create_file_writer(summary_dir) | |
with summary_writer.as_default(): | |
# TODO(lehou): write to the correct step number. | |
tf.summary.scalar('F1-score', f1_score, step=0) | |
summary_writer.flush() | |
# Also write eval_metrics to json file. | |
squad_lib_wp.write_to_json_files( | |
eval_metrics, os.path.join(summary_dir, 'eval_metrics.json')) | |
time.sleep(60) | |
if __name__ == '__main__': | |
flags.mark_flag_as_required('bert_config_file') | |
flags.mark_flag_as_required('model_dir') | |
app.run(main) | |