deanna-emery's picture
updates
93528c6
raw
history blame
23 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ROI-related ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf, tf_keras
from official.legacy.detection.ops import nms
from official.legacy.detection.utils import box_utils
def multilevel_propose_rois(rpn_boxes,
rpn_scores,
anchor_boxes,
image_shape,
rpn_pre_nms_top_k=2000,
rpn_post_nms_top_k=1000,
rpn_nms_threshold=0.7,
rpn_score_threshold=0.0,
rpn_min_size_threshold=0.0,
decode_boxes=True,
clip_boxes=True,
use_batched_nms=False,
apply_sigmoid_to_score=True):
"""Proposes RoIs given a group of candidates from different FPN levels.
The following describes the steps:
1. For each individual level:
a. Apply sigmoid transform if specified.
b. Decode boxes if specified.
c. Clip boxes if specified.
d. Filter small boxes and those fall outside image if specified.
e. Apply pre-NMS filtering including pre-NMS top k and score thresholding.
f. Apply NMS.
2. Aggregate post-NMS boxes from each level.
3. Apply an overall top k to generate the final selected RoIs.
Args:
rpn_boxes: a dict with keys representing FPN levels and values representing
box tenors of shape [batch_size, feature_h, feature_w, num_anchors * 4].
rpn_scores: a dict with keys representing FPN levels and values representing
logit tensors of shape [batch_size, feature_h, feature_w, num_anchors].
anchor_boxes: a dict with keys representing FPN levels and values
representing anchor box tensors of shape [batch_size, feature_h,
feature_w, num_anchors * 4].
image_shape: a tensor of shape [batch_size, 2] where the last dimension are
[height, width] of the scaled image.
rpn_pre_nms_top_k: an integer of top scoring RPN proposals *per level* to
keep before applying NMS. Default: 2000.
rpn_post_nms_top_k: an integer of top scoring RPN proposals *in total* to
keep after applying NMS. Default: 1000.
rpn_nms_threshold: a float between 0 and 1 representing the IoU threshold
used for NMS. If 0.0, no NMS is applied. Default: 0.7.
rpn_score_threshold: a float between 0 and 1 representing the minimal box
score to keep before applying NMS. This is often used as a pre-filtering
step for better performance. If 0, no filtering is applied. Default: 0.
rpn_min_size_threshold: a float representing the minimal box size in each
side (w.r.t. the scaled image) to keep before applying NMS. This is often
used as a pre-filtering step for better performance. If 0, no filtering is
applied. Default: 0.
decode_boxes: a boolean indicating whether `rpn_boxes` needs to be decoded
using `anchor_boxes`. If False, use `rpn_boxes` directly and ignore
`anchor_boxes`. Default: True.
clip_boxes: a boolean indicating whether boxes are first clipped to the
scaled image size before appliying NMS. If False, no clipping is applied
and `image_shape` is ignored. Default: True.
use_batched_nms: a boolean indicating whether NMS is applied in batch using
`tf.image.combined_non_max_suppression`. Currently only available in
CPU/GPU. Default: False.
apply_sigmoid_to_score: a boolean indicating whether apply sigmoid to
`rpn_scores` before applying NMS. Default: True.
Returns:
selected_rois: a tensor of shape [batch_size, rpn_post_nms_top_k, 4],
representing the box coordinates of the selected proposals w.r.t. the
scaled image.
selected_roi_scores: a tensor of shape [batch_size, rpn_post_nms_top_k, 1],
representing the scores of the selected proposals.
"""
with tf.name_scope('multilevel_propose_rois'):
rois = []
roi_scores = []
image_shape = tf.expand_dims(image_shape, axis=1)
for level in sorted(rpn_scores.keys()):
with tf.name_scope('level_%d' % level):
_, feature_h, feature_w, num_anchors_per_location = (
rpn_scores[level].get_shape().as_list())
num_boxes = feature_h * feature_w * num_anchors_per_location
this_level_scores = tf.reshape(rpn_scores[level], [-1, num_boxes])
this_level_boxes = tf.reshape(rpn_boxes[level], [-1, num_boxes, 4])
this_level_anchors = tf.cast(
tf.reshape(anchor_boxes[level], [-1, num_boxes, 4]),
dtype=this_level_scores.dtype)
if apply_sigmoid_to_score:
this_level_scores = tf.sigmoid(this_level_scores)
if decode_boxes:
this_level_boxes = box_utils.decode_boxes(this_level_boxes,
this_level_anchors)
if clip_boxes:
this_level_boxes = box_utils.clip_boxes(this_level_boxes, image_shape)
if rpn_min_size_threshold > 0.0:
this_level_boxes, this_level_scores = box_utils.filter_boxes(
this_level_boxes, this_level_scores, image_shape,
rpn_min_size_threshold)
this_level_pre_nms_top_k = min(num_boxes, rpn_pre_nms_top_k)
this_level_post_nms_top_k = min(num_boxes, rpn_post_nms_top_k)
if rpn_nms_threshold > 0.0:
if use_batched_nms:
this_level_rois, this_level_roi_scores, _, _ = (
tf.image.combined_non_max_suppression(
tf.expand_dims(this_level_boxes, axis=2),
tf.expand_dims(this_level_scores, axis=-1),
max_output_size_per_class=this_level_pre_nms_top_k,
max_total_size=this_level_post_nms_top_k,
iou_threshold=rpn_nms_threshold,
score_threshold=rpn_score_threshold,
pad_per_class=False,
clip_boxes=False))
else:
if rpn_score_threshold > 0.0:
this_level_boxes, this_level_scores = (
box_utils.filter_boxes_by_scores(this_level_boxes,
this_level_scores,
rpn_score_threshold))
this_level_boxes, this_level_scores = box_utils.top_k_boxes(
this_level_boxes, this_level_scores, k=this_level_pre_nms_top_k)
this_level_roi_scores, this_level_rois = (
nms.sorted_non_max_suppression_padded(
this_level_scores,
this_level_boxes,
max_output_size=this_level_post_nms_top_k,
iou_threshold=rpn_nms_threshold))
else:
this_level_rois, this_level_roi_scores = box_utils.top_k_boxes(
this_level_rois, this_level_scores, k=this_level_post_nms_top_k)
rois.append(this_level_rois)
roi_scores.append(this_level_roi_scores)
all_rois = tf.concat(rois, axis=1)
all_roi_scores = tf.concat(roi_scores, axis=1)
with tf.name_scope('top_k_rois'):
_, num_valid_rois = all_roi_scores.get_shape().as_list()
overall_top_k = min(num_valid_rois, rpn_post_nms_top_k)
selected_rois, selected_roi_scores = box_utils.top_k_boxes(
all_rois, all_roi_scores, k=overall_top_k)
return selected_rois, selected_roi_scores
class ROIGenerator(tf_keras.layers.Layer):
"""Proposes RoIs for the second stage processing."""
def __init__(self, params):
self._rpn_pre_nms_top_k = params.rpn_pre_nms_top_k
self._rpn_post_nms_top_k = params.rpn_post_nms_top_k
self._rpn_nms_threshold = params.rpn_nms_threshold
self._rpn_score_threshold = params.rpn_score_threshold
self._rpn_min_size_threshold = params.rpn_min_size_threshold
self._test_rpn_pre_nms_top_k = params.test_rpn_pre_nms_top_k
self._test_rpn_post_nms_top_k = params.test_rpn_post_nms_top_k
self._test_rpn_nms_threshold = params.test_rpn_nms_threshold
self._test_rpn_score_threshold = params.test_rpn_score_threshold
self._test_rpn_min_size_threshold = params.test_rpn_min_size_threshold
self._use_batched_nms = params.use_batched_nms
super(ROIGenerator, self).__init__(autocast=False)
def call(self, boxes, scores, anchor_boxes, image_shape, is_training):
"""Generates RoI proposals.
Args:
boxes: a dict with keys representing FPN levels and values representing
box tenors of shape [batch_size, feature_h, feature_w, num_anchors * 4].
scores: a dict with keys representing FPN levels and values representing
logit tensors of shape [batch_size, feature_h, feature_w, num_anchors].
anchor_boxes: a dict with keys representing FPN levels and values
representing anchor box tensors of shape [batch_size, feature_h,
feature_w, num_anchors * 4].
image_shape: a tensor of shape [batch_size, 2] where the last dimension
are [height, width] of the scaled image.
is_training: a bool indicating whether it is in training or inference
mode.
Returns:
proposed_rois: a tensor of shape [batch_size, rpn_post_nms_top_k, 4],
representing the box coordinates of the proposed RoIs w.r.t. the
scaled image.
proposed_roi_scores: a tensor of shape
[batch_size, rpn_post_nms_top_k, 1], representing the scores of the
proposed RoIs.
"""
proposed_rois, proposed_roi_scores = multilevel_propose_rois(
boxes,
scores,
anchor_boxes,
image_shape,
rpn_pre_nms_top_k=(self._rpn_pre_nms_top_k
if is_training else self._test_rpn_pre_nms_top_k),
rpn_post_nms_top_k=(self._rpn_post_nms_top_k
if is_training else self._test_rpn_post_nms_top_k),
rpn_nms_threshold=(self._rpn_nms_threshold
if is_training else self._test_rpn_nms_threshold),
rpn_score_threshold=(self._rpn_score_threshold if is_training else
self._test_rpn_score_threshold),
rpn_min_size_threshold=(self._rpn_min_size_threshold if is_training else
self._test_rpn_min_size_threshold),
decode_boxes=True,
clip_boxes=True,
use_batched_nms=self._use_batched_nms,
apply_sigmoid_to_score=True)
return proposed_rois, proposed_roi_scores
class OlnROIGenerator(ROIGenerator):
"""Proposes RoIs for the second stage processing."""
def __call__(self, boxes, scores, anchor_boxes, image_shape, is_training,
is_box_lrtb=False, object_scores=None):
"""Generates RoI proposals.
Args:
boxes: a dict with keys representing FPN levels and values representing
box tenors of shape [batch_size, feature_h, feature_w, num_anchors * 4].
scores: a dict with keys representing FPN levels and values representing
logit tensors of shape [batch_size, feature_h, feature_w, num_anchors].
anchor_boxes: a dict with keys representing FPN levels and values
representing anchor box tensors of shape [batch_size, feature_h,
feature_w, num_anchors * 4].
image_shape: a tensor of shape [batch_size, 2] where the last dimension
are [height, width] of the scaled image.
is_training: a bool indicating whether it is in training or inference
mode.
is_box_lrtb: a bool indicating whether boxes are in lrtb (=left,right,top,
bottom) format.
object_scores: another objectness score (e.g., centerness). In OLN, we use
object_scores=centerness as a replacement of the scores at each level.
A dict with keys representing FPN levels and values representing logit
tensors of shape [batch_size, feature_h, feature_w, num_anchors].
Returns:
proposed_rois: a tensor of shape [batch_size, rpn_post_nms_top_k, 4],
representing the box coordinates of the proposed RoIs w.r.t. the
scaled image.
proposed_roi_scores: a tensor of shape
[batch_size, rpn_post_nms_top_k, 1], representing the scores of the
proposed RoIs.
"""
proposed_rois, proposed_roi_scores = self.oln_multilevel_propose_rois(
boxes,
scores,
anchor_boxes,
image_shape,
rpn_pre_nms_top_k=(self._rpn_pre_nms_top_k
if is_training else self._test_rpn_pre_nms_top_k),
rpn_post_nms_top_k=(self._rpn_post_nms_top_k
if is_training else self._test_rpn_post_nms_top_k),
rpn_nms_threshold=(self._rpn_nms_threshold
if is_training else self._test_rpn_nms_threshold),
rpn_score_threshold=(self._rpn_score_threshold if is_training else
self._test_rpn_score_threshold),
rpn_min_size_threshold=(self._rpn_min_size_threshold if is_training else
self._test_rpn_min_size_threshold),
decode_boxes=True,
clip_boxes=True,
use_batched_nms=self._use_batched_nms,
apply_sigmoid_to_score=True,
is_box_lrtb=is_box_lrtb,
rpn_object_scores=object_scores,)
return proposed_rois, proposed_roi_scores
def oln_multilevel_propose_rois(self,
rpn_boxes,
rpn_scores,
anchor_boxes,
image_shape,
rpn_pre_nms_top_k=2000,
rpn_post_nms_top_k=1000,
rpn_nms_threshold=0.7,
rpn_score_threshold=0.0,
rpn_min_size_threshold=0.0,
decode_boxes=True,
clip_boxes=True,
use_batched_nms=False,
apply_sigmoid_to_score=True,
is_box_lrtb=False,
rpn_object_scores=None,):
"""Proposes RoIs given a group of candidates from different FPN levels.
The following describes the steps:
1. For each individual level:
a. Adjust scores for each level if specified by rpn_object_scores.
b. Apply sigmoid transform if specified.
c. Decode boxes (either of xyhw or left-right-top-bottom format) if
specified.
d. Clip boxes if specified.
e. Filter small boxes and those fall outside image if specified.
f. Apply pre-NMS filtering including pre-NMS top k and score
thresholding.
g. Apply NMS.
2. Aggregate post-NMS boxes from each level.
3. Apply an overall top k to generate the final selected RoIs.
Args:
rpn_boxes: a dict with keys representing FPN levels and values
representing box tenors of shape [batch_size, feature_h, feature_w,
num_anchors * 4].
rpn_scores: a dict with keys representing FPN levels and values
representing logit tensors of shape [batch_size, feature_h, feature_w,
num_anchors].
anchor_boxes: a dict with keys representing FPN levels and values
representing anchor box tensors of shape [batch_size, feature_h,
feature_w, num_anchors * 4].
image_shape: a tensor of shape [batch_size, 2] where the last dimension
are [height, width] of the scaled image.
rpn_pre_nms_top_k: an integer of top scoring RPN proposals *per level* to
keep before applying NMS. Default: 2000.
rpn_post_nms_top_k: an integer of top scoring RPN proposals *in total* to
keep after applying NMS. Default: 1000.
rpn_nms_threshold: a float between 0 and 1 representing the IoU threshold
used for NMS. If 0.0, no NMS is applied. Default: 0.7.
rpn_score_threshold: a float between 0 and 1 representing the minimal box
score to keep before applying NMS. This is often used as a pre-filtering
step for better performance. If 0, no filtering is applied. Default: 0.
rpn_min_size_threshold: a float representing the minimal box size in each
side (w.r.t. the scaled image) to keep before applying NMS. This is
often used as a pre-filtering step for better performance. If 0, no
filtering is applied. Default: 0.
decode_boxes: a boolean indicating whether `rpn_boxes` needs to be decoded
using `anchor_boxes`. If False, use `rpn_boxes` directly and ignore
`anchor_boxes`. Default: True.
clip_boxes: a boolean indicating whether boxes are first clipped to the
scaled image size before appliying NMS. If False, no clipping is applied
and `image_shape` is ignored. Default: True.
use_batched_nms: a boolean indicating whether NMS is applied in batch
using `tf.image.combined_non_max_suppression`. Currently only available
in CPU/GPU. Default: False.
apply_sigmoid_to_score: a boolean indicating whether apply sigmoid to
`rpn_scores` before applying NMS. Default: True.
is_box_lrtb: a bool indicating whether boxes are in lrtb (=left,right,top,
bottom) format.
rpn_object_scores: a predicted objectness score (e.g., centerness). In
OLN, we use object_scores=centerness as a replacement of the scores at
each level. A dict with keys representing FPN levels and values
representing logit tensors of shape [batch_size, feature_h, feature_w,
num_anchors].
Returns:
selected_rois: a tensor of shape [batch_size, rpn_post_nms_top_k, 4],
representing the box coordinates of the selected proposals w.r.t. the
scaled image.
selected_roi_scores: a tensor of shape [batch_size, rpn_post_nms_top_k,
1],representing the scores of the selected proposals.
"""
with tf.name_scope('multilevel_propose_rois'):
rois = []
roi_scores = []
image_shape = tf.expand_dims(image_shape, axis=1)
for level in sorted(rpn_scores.keys()):
with tf.name_scope('level_%d' % level):
_, feature_h, feature_w, num_anchors_per_location = (
rpn_scores[level].get_shape().as_list())
num_boxes = feature_h * feature_w * num_anchors_per_location
this_level_scores = tf.reshape(rpn_scores[level], [-1, num_boxes])
this_level_boxes = tf.reshape(rpn_boxes[level], [-1, num_boxes, 4])
this_level_anchors = tf.cast(
tf.reshape(anchor_boxes[level], [-1, num_boxes, 4]),
dtype=this_level_scores.dtype)
if rpn_object_scores:
this_level_object_scores = rpn_object_scores[level]
this_level_object_scores = tf.reshape(this_level_object_scores,
[-1, num_boxes])
this_level_object_scores = tf.cast(this_level_object_scores,
this_level_scores.dtype)
this_level_scores = this_level_object_scores
if apply_sigmoid_to_score:
this_level_scores = tf.sigmoid(this_level_scores)
if decode_boxes:
if is_box_lrtb: # Box in left-right-top-bottom format.
this_level_boxes = box_utils.decode_boxes_lrtb(
this_level_boxes, this_level_anchors)
else: # Box in standard x-y-h-w format.
this_level_boxes = box_utils.decode_boxes(
this_level_boxes, this_level_anchors)
if clip_boxes:
this_level_boxes = box_utils.clip_boxes(
this_level_boxes, image_shape)
if rpn_min_size_threshold > 0.0:
this_level_boxes, this_level_scores = box_utils.filter_boxes(
this_level_boxes, this_level_scores, image_shape,
rpn_min_size_threshold)
this_level_pre_nms_top_k = min(num_boxes, rpn_pre_nms_top_k)
this_level_post_nms_top_k = min(num_boxes, rpn_post_nms_top_k)
if rpn_nms_threshold > 0.0:
if use_batched_nms:
this_level_rois, this_level_roi_scores, _, _ = (
tf.image.combined_non_max_suppression(
tf.expand_dims(this_level_boxes, axis=2),
tf.expand_dims(this_level_scores, axis=-1),
max_output_size_per_class=this_level_pre_nms_top_k,
max_total_size=this_level_post_nms_top_k,
iou_threshold=rpn_nms_threshold,
score_threshold=rpn_score_threshold,
pad_per_class=False,
clip_boxes=False))
else:
if rpn_score_threshold > 0.0:
this_level_boxes, this_level_scores = (
box_utils.filter_boxes_by_scores(this_level_boxes,
this_level_scores,
rpn_score_threshold))
this_level_boxes, this_level_scores = box_utils.top_k_boxes(
this_level_boxes, this_level_scores,
k=this_level_pre_nms_top_k)
this_level_roi_scores, this_level_rois = (
nms.sorted_non_max_suppression_padded(
this_level_scores,
this_level_boxes,
max_output_size=this_level_post_nms_top_k,
iou_threshold=rpn_nms_threshold))
else:
this_level_rois, this_level_roi_scores = box_utils.top_k_boxes(
this_level_rois, this_level_scores, k=this_level_post_nms_top_k)
rois.append(this_level_rois)
roi_scores.append(this_level_roi_scores)
all_rois = tf.concat(rois, axis=1)
all_roi_scores = tf.concat(roi_scores, axis=1)
with tf.name_scope('top_k_rois'):
_, num_valid_rois = all_roi_scores.get_shape().as_list()
overall_top_k = min(num_valid_rois, rpn_post_nms_top_k)
selected_rois, selected_roi_scores = box_utils.top_k_boxes(
all_rois, all_roi_scores, k=overall_top_k)
return selected_rois, selected_roi_scores