Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""XLNet classification finetuning runner in tf2.0.""" | |
import functools | |
# Import libraries | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
# pylint: disable=unused-import | |
from official.common import distribute_utils | |
from official.legacy.xlnet import common_flags | |
from official.legacy.xlnet import data_utils | |
from official.legacy.xlnet import optimization | |
from official.legacy.xlnet import training_utils | |
from official.legacy.xlnet import xlnet_config | |
from official.legacy.xlnet import xlnet_modeling as modeling | |
flags.DEFINE_integer("n_class", default=2, help="Number of classes.") | |
flags.DEFINE_string( | |
"summary_type", | |
default="last", | |
help="Method used to summarize a sequence into a vector.") | |
FLAGS = flags.FLAGS | |
def get_classificationxlnet_model(model_config, | |
run_config, | |
n_class, | |
summary_type="last"): | |
model = modeling.ClassificationXLNetModel( | |
model_config, run_config, n_class, summary_type, name="model") | |
return model | |
def run_evaluation(strategy, | |
test_input_fn, | |
eval_steps, | |
model, | |
step, | |
eval_summary_writer=None): | |
"""Run evaluation for classification task. | |
Args: | |
strategy: distribution strategy. | |
test_input_fn: input function for evaluation data. | |
eval_steps: total number of evaluation steps. | |
model: keras model object. | |
step: current train step. | |
eval_summary_writer: summary writer used to record evaluation metrics. As | |
there are fake data samples in validation set, we use mask to get rid of | |
them when calculating the accuracy. For the reason that there will be | |
dynamic-shape tensor, we first collect logits, labels and masks from TPU | |
and calculate the accuracy via numpy locally. | |
Returns: | |
A float metric, accuracy. | |
""" | |
def _test_step_fn(inputs): | |
"""Replicated validation step.""" | |
inputs["mems"] = None | |
_, logits = model(inputs, training=False) | |
return logits, inputs["label_ids"], inputs["is_real_example"] | |
def _run_evaluation(test_iterator): | |
"""Runs validation steps.""" | |
logits, labels, masks = strategy.run( | |
_test_step_fn, args=(next(test_iterator),)) | |
return logits, labels, masks | |
test_iterator = data_utils.get_input_iterator(test_input_fn, strategy) | |
correct = 0 | |
total = 0 | |
for _ in range(eval_steps): | |
logits, labels, masks = _run_evaluation(test_iterator) | |
logits = strategy.experimental_local_results(logits) | |
labels = strategy.experimental_local_results(labels) | |
masks = strategy.experimental_local_results(masks) | |
merged_logits = [] | |
merged_labels = [] | |
merged_masks = [] | |
for i in range(strategy.num_replicas_in_sync): | |
merged_logits.append(logits[i].numpy()) | |
merged_labels.append(labels[i].numpy()) | |
merged_masks.append(masks[i].numpy()) | |
merged_logits = np.vstack(np.array(merged_logits)) | |
merged_labels = np.hstack(np.array(merged_labels)) | |
merged_masks = np.hstack(np.array(merged_masks)) | |
real_index = np.where(np.equal(merged_masks, 1)) | |
correct += np.sum( | |
np.equal( | |
np.argmax(merged_logits[real_index], axis=-1), | |
merged_labels[real_index])) | |
total += np.shape(real_index)[-1] | |
accuracy = float(correct) / float(total) | |
logging.info("Train step: %d / acc = %d/%d = %f", step, correct, total, | |
accuracy) | |
if eval_summary_writer: | |
with eval_summary_writer.as_default(): | |
tf.summary.scalar("eval_acc", float(correct) / float(total), step=step) | |
eval_summary_writer.flush() | |
return accuracy | |
def get_metric_fn(): | |
train_acc_metric = tf_keras.metrics.SparseCategoricalAccuracy( | |
"acc", dtype=tf.float32) | |
return train_acc_metric | |
def main(unused_argv): | |
del unused_argv | |
strategy = distribute_utils.get_distribution_strategy( | |
distribution_strategy=FLAGS.strategy_type, | |
tpu_address=FLAGS.tpu) | |
if strategy: | |
logging.info("***** Number of cores used : %d", | |
strategy.num_replicas_in_sync) | |
train_input_fn = functools.partial(data_utils.get_classification_input_data, | |
FLAGS.train_batch_size, FLAGS.seq_len, | |
strategy, True, FLAGS.train_tfrecord_path) | |
test_input_fn = functools.partial(data_utils.get_classification_input_data, | |
FLAGS.test_batch_size, FLAGS.seq_len, | |
strategy, False, FLAGS.test_tfrecord_path) | |
total_training_steps = FLAGS.train_steps | |
steps_per_loop = FLAGS.iterations | |
eval_steps = int(FLAGS.test_data_size / FLAGS.test_batch_size) | |
eval_fn = functools.partial(run_evaluation, strategy, test_input_fn, | |
eval_steps) | |
optimizer, learning_rate_fn = optimization.create_optimizer( | |
FLAGS.learning_rate, | |
total_training_steps, | |
FLAGS.warmup_steps, | |
adam_epsilon=FLAGS.adam_epsilon) | |
model_config = xlnet_config.XLNetConfig(FLAGS) | |
run_config = xlnet_config.create_run_config(True, False, FLAGS) | |
model_fn = functools.partial(get_classificationxlnet_model, model_config, | |
run_config, FLAGS.n_class, FLAGS.summary_type) | |
input_meta_data = {} | |
input_meta_data["d_model"] = FLAGS.d_model | |
input_meta_data["mem_len"] = FLAGS.mem_len | |
input_meta_data["batch_size_per_core"] = int(FLAGS.train_batch_size / | |
strategy.num_replicas_in_sync) | |
input_meta_data["n_layer"] = FLAGS.n_layer | |
input_meta_data["lr_layer_decay_rate"] = FLAGS.lr_layer_decay_rate | |
input_meta_data["n_class"] = FLAGS.n_class | |
training_utils.train( | |
strategy=strategy, | |
model_fn=model_fn, | |
input_meta_data=input_meta_data, | |
eval_fn=eval_fn, | |
metric_fn=get_metric_fn, | |
train_input_fn=train_input_fn, | |
init_checkpoint=FLAGS.init_checkpoint, | |
init_from_transformerxl=FLAGS.init_from_transformerxl, | |
total_training_steps=total_training_steps, | |
steps_per_loop=steps_per_loop, | |
optimizer=optimizer, | |
learning_rate_fn=learning_rate_fn, | |
model_dir=FLAGS.model_dir, | |
save_steps=FLAGS.save_steps) | |
if __name__ == "__main__": | |
app.run(main) | |