Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for grad_utils.""" | |
import tensorflow as tf, tf_keras | |
from official.modeling import grad_utils | |
from official.modeling import performance | |
class GradUtilsTest(tf.test.TestCase): | |
def test_minimize(self): | |
optimizer = tf_keras.optimizers.SGD(0.1) | |
with tf.GradientTape() as tape: | |
model = tf_keras.layers.Dense(2) | |
outputs = model(tf.zeros((2, 2), tf.float32)) | |
loss = tf.reduce_mean(outputs) | |
grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss, | |
model.trainable_variables) | |
def test_minimize_fp16(self): | |
optimizer = performance.configure_optimizer( | |
tf_keras.optimizers.SGD(0.1), use_float16=True) | |
performance.set_mixed_precision_policy(tf.float16) | |
with tf.GradientTape() as tape: | |
model = tf_keras.layers.Dense(2) | |
outputs = model(tf.zeros((2, 2), tf.float16)) | |
loss = tf.reduce_mean(outputs) | |
grad_utils.minimize_using_explicit_allreduce(tape, optimizer, loss, | |
model.trainable_variables) | |
# Test other fp16 settings. | |
def _clip_by_global_norm(grads_and_vars): | |
grads, tvars = list(zip(*grads_and_vars)) | |
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) | |
return zip(grads, tvars) | |
with tf.GradientTape() as tape: | |
model = tf_keras.layers.Dense(2) | |
outputs = model(tf.zeros((2, 2), tf.float16)) | |
loss = tf.reduce_mean(outputs) | |
optimizer = performance.configure_optimizer( | |
tf_keras.optimizers.SGD(0.1), use_float16=True, loss_scale=128) | |
grad_utils.minimize_using_explicit_allreduce( | |
tape, | |
optimizer, | |
loss, | |
model.trainable_variables, | |
pre_allreduce_callbacks=[_clip_by_global_norm], | |
post_allreduce_callbacks=[_clip_by_global_norm]) | |
def test_set_mixed_precision_policy(self): | |
performance.set_mixed_precision_policy(tf.float16) | |
performance.set_mixed_precision_policy(tf.bfloat16) | |
performance.set_mixed_precision_policy(tf.float32) | |
with self.assertRaises(ValueError): | |
performance.set_mixed_precision_policy(tf.int32) | |
if __name__ == '__main__': | |
tf.test.main() | |