ASL-MoViNet-T5-translator / official /nlp /continuous_finetune_lib.py
deanna-emery's picture
updates
93528c6
raw
history blame
7.89 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFM continuous finetuning+eval training driver library."""
import gc
import os
import time
from typing import Any, Mapping, Optional
from absl import logging
import tensorflow as tf, tf_keras
from official.common import distribute_utils
from official.core import config_definitions
from official.core import task_factory
from official.core import train_lib
from official.core import train_utils
from official.modeling import performance
from official.modeling.multitask import configs
from official.modeling.multitask import train_lib as multitask_train_lib
def _flatten_dict(xs):
"""Flatten a nested dictionary.
The nested keys are flattened to a tuple.
Example::
xs = {'foo': 1, 'bar': {'a': 2, 'b': {}}}
flat_xs = flatten_dict(xs)
print(flat_xs)
# {
# ('foo',): 1,
# ('bar', 'a'): 2,
# }
Note that empty dictionaries are ignored and
will not be restored by `unflatten_dict`.
Args:
xs: a nested dictionary
Returns:
The flattened dictionary.
"""
assert isinstance(xs, dict), 'input is not a dict'
def _flatten(xs, prefix):
if not isinstance(xs, dict):
return {prefix: xs}
result = {}
for key, value in xs.items():
path = prefix + (key,)
result.update(_flatten(value, path))
return result
return _flatten(xs, ())
def run_continuous_finetune(
mode: str,
params: config_definitions.ExperimentConfig,
model_dir: str,
run_post_eval: bool = False,
pretrain_steps: Optional[int] = None,
) -> Mapping[str, Any]:
"""Run modes with continuous training.
Currently only supports continuous_train_and_eval.
Args:
mode: A 'str', specifying the mode. continuous_train_and_eval - monitors a
checkpoint directory. Once a new checkpoint is discovered, loads the
checkpoint, finetune the model by training it (probably on another dataset
or with another task), then evaluate the finetuned model.
params: ExperimentConfig instance.
model_dir: A 'str', a path to store model checkpoints and summaries.
run_post_eval: Whether to run post eval once after training, metrics logs
are returned.
pretrain_steps: Optional, the number of total training steps for the
pretraining job.
Returns:
eval logs: returns eval metrics logs when run_post_eval is set to True,
othewise, returns {}.
"""
assert mode == 'continuous_train_and_eval', (
'Only continuous_train_and_eval is supported by continuous_finetune. '
'Got mode: {}'.format(mode))
# Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
# can have significant impact on model speeds by utilizing float16 in case of
# GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
# dtype is float16
if params.runtime.mixed_precision_dtype:
performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype)
distribution_strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=params.runtime.distribution_strategy,
all_reduce_alg=params.runtime.all_reduce_alg,
num_gpus=params.runtime.num_gpus,
tpu_address=params.runtime.tpu)
retry_times = 0
while not tf.io.gfile.isdir(params.task.init_checkpoint):
# Wait for the init_checkpoint directory to be created.
if retry_times >= 60:
raise ValueError(
'ExperimentConfig.task.init_checkpoint must be a directory for '
'continuous_train_and_eval mode.')
retry_times += 1
time.sleep(60)
summary_writer = tf.summary.create_file_writer(
os.path.join(model_dir, 'eval'))
global_step = 0
def timeout_fn():
if pretrain_steps and global_step < pretrain_steps:
# Keeps waiting for another timeout period.
logging.info(
'Continue waiting for new checkpoint as current pretrain '
'global_step=%d and target is %d.', global_step, pretrain_steps)
return False
# Quits the loop.
return True
for pretrain_ckpt in tf.train.checkpoints_iterator(
checkpoint_dir=params.task.init_checkpoint,
min_interval_secs=10,
timeout=params.trainer.continuous_eval_timeout,
timeout_fn=timeout_fn):
# If there are checkpoints, they might be the finetune checkpoint of a
# different pretrained checkpoint. So we just remove all checkpoints.
train_utils.remove_ckpts(model_dir)
with distribution_strategy.scope():
global_step = train_utils.read_global_step_from_checkpoint(pretrain_ckpt)
# Replaces params.task.init_checkpoint to make sure that we load
# exactly this pretrain checkpoint.
if params.trainer.best_checkpoint_export_subdir:
best_ckpt_subdir = '{}_{}'.format(
params.trainer.best_checkpoint_export_subdir, global_step)
params_replaced = params.replace(
task={'init_checkpoint': pretrain_ckpt},
trainer={'best_checkpoint_export_subdir': best_ckpt_subdir})
else:
params_replaced = params.replace(task={'init_checkpoint': pretrain_ckpt})
params_replaced.lock()
logging.info('Running finetuning with params: %s', params_replaced)
with distribution_strategy.scope():
if isinstance(params, configs.MultiEvalExperimentConfig):
task = task_factory.get_task(params_replaced.task)
eval_tasks = [
task_factory.get_task(config.task_config, name=config.task_name)
for config in params.eval_tasks
]
(_,
eval_metrics) = multitask_train_lib.run_experiment_with_multitask_eval(
distribution_strategy=distribution_strategy,
train_task=task,
eval_tasks=eval_tasks,
mode='train_and_eval',
params=params_replaced,
model_dir=model_dir,
run_post_eval=True,
save_summary=False)
else:
task = task_factory.get_task(
params_replaced.task, logging_dir=model_dir)
_, eval_metrics = train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode='train_and_eval',
params=params_replaced,
model_dir=model_dir,
run_post_eval=True,
save_summary=False)
logging.info('Evaluation finished. Pretrain global_step: %d', global_step)
train_utils.write_json_summary(model_dir, global_step, eval_metrics)
if not os.path.basename(model_dir): # if model_dir.endswith('/')
summary_grp = os.path.dirname(model_dir) + '_' + task.name
else:
summary_grp = os.path.basename(model_dir) + '_' + task.name
summaries = {}
for name, value in _flatten_dict(eval_metrics).items():
summaries[summary_grp + '/' + '-'.join(name)] = value
train_utils.write_summary(summary_writer, global_step, summaries)
train_utils.remove_ckpts(model_dir)
# In TF2, the resource life cycle is bound with the python object life
# cycle. Force trigger python garbage collection here so those resources
# can be deallocated in time, so it doesn't cause OOM when allocating new
# objects.
# TODO(b/169178664): Fix cycle reference in Keras model and revisit to see
# if we need gc here.
gc.collect()
if run_post_eval:
return eval_metrics
return {}