ASL-MoViNet-T5-translator / official /nlp /data /dual_encoder_dataloader.py
deanna-emery's picture
updates
93528c6
raw
history blame
5.82 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Loads dataset for the dual encoder (retrieval) task."""
import dataclasses
import functools
import itertools
from typing import Iterable, Mapping, Optional, Tuple
import tensorflow as tf, tf_keras
import tensorflow_hub as hub
from official.common import dataset_fn
from official.core import config_definitions as cfg
from official.core import input_reader
from official.nlp.data import data_loader
from official.nlp.data import data_loader_factory
from official.nlp.modeling import layers
@dataclasses.dataclass
class DualEncoderDataConfig(cfg.DataConfig):
"""Data config for dual encoder task (tasks/dual_encoder)."""
# Either set `input_path`...
input_path: str = ''
# ...or `tfds_name` and `tfds_split` to specify input.
tfds_name: str = ''
tfds_split: str = ''
global_batch_size: int = 32
# Either build preprocessing with Python code by specifying these values...
vocab_file: str = ''
lower_case: bool = True
# ...or load preprocessing from a SavedModel at this location.
preprocessing_hub_module_url: str = ''
left_text_fields: Tuple[str] = ('left_input',)
right_text_fields: Tuple[str] = ('right_input',)
is_training: bool = True
seq_length: int = 128
file_type: str = 'tfrecord'
@data_loader_factory.register_data_loader_cls(DualEncoderDataConfig)
class DualEncoderDataLoader(data_loader.DataLoader):
"""A class to load dataset for dual encoder task (tasks/dual_encoder)."""
def __init__(self, params):
if bool(params.tfds_name) == bool(params.input_path):
raise ValueError('Must specify either `tfds_name` and `tfds_split` '
'or `input_path`.')
if bool(params.vocab_file) == bool(params.preprocessing_hub_module_url):
raise ValueError('Must specify exactly one of vocab_file (with matching '
'lower_case flag) or preprocessing_hub_module_url.')
self._params = params
self._seq_length = params.seq_length
self._left_text_fields = params.left_text_fields
self._right_text_fields = params.right_text_fields
if params.preprocessing_hub_module_url:
preprocessing_hub_module = hub.load(params.preprocessing_hub_module_url)
self._tokenizer = preprocessing_hub_module.tokenize
self._pack_inputs = functools.partial(
preprocessing_hub_module.bert_pack_inputs,
seq_length=params.seq_length)
else:
self._tokenizer = layers.BertTokenizer(
vocab_file=params.vocab_file, lower_case=params.lower_case)
self._pack_inputs = layers.BertPackInputs(
seq_length=params.seq_length,
special_tokens_dict=self._tokenizer.get_special_tokens_dict())
def _decode(self, record: tf.Tensor):
"""Decodes a serialized tf.Example."""
name_to_features = {
x: tf.io.FixedLenFeature([], tf.string)
for x in itertools.chain(
*[self._left_text_fields, self._right_text_fields])
}
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in example:
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def _bert_tokenize(
self, record: Mapping[str, tf.Tensor],
text_fields: Iterable[str]) -> Tuple[tf.Tensor, tf.Tensor, tf.Tensor]:
"""Tokenize the input in text_fields using BERT tokenizer.
Args:
record: A tfexample record contains the features.
text_fields: A list of fields to be tokenzied.
Returns:
The tokenized features in a tuple of (input_word_ids, input_mask,
input_type_ids).
"""
segments_text = [record[x] for x in text_fields]
segments_tokens = [self._tokenizer(s) for s in segments_text]
segments = [tf.cast(x.merge_dims(1, 2), tf.int32) for x in segments_tokens]
return self._pack_inputs(segments)
def _bert_preprocess(
self, record: Mapping[str, tf.Tensor]) -> Mapping[str, tf.Tensor]:
"""Perform the bert word piece tokenization for left and right inputs."""
def _switch_prefix(string, old, new):
if string.startswith(old): return new + string[len(old):]
raise ValueError('Expected {} to start with {}'.format(string, old))
def _switch_key_prefix(d, old, new):
return {_switch_prefix(key, old, new): value for key, value in d.items()} # pytype: disable=attribute-error # trace-all-classes
model_inputs = _switch_key_prefix(
self._bert_tokenize(record, self._left_text_fields),
'input_', 'left_')
model_inputs.update(_switch_key_prefix(
self._bert_tokenize(record, self._right_text_fields),
'input_', 'right_'))
return model_inputs
def load(self, input_context: Optional[tf.distribute.InputContext] = None):
"""Returns a tf.dataset.Dataset."""
reader = input_reader.InputReader(
params=self._params,
# Skip `decoder_fn` for tfds input.
decoder_fn=self._decode if self._params.input_path else None,
dataset_fn=dataset_fn.pick_dataset_fn(self._params.file_type),
postprocess_fn=self._bert_preprocess)
return reader.read(input_context)