Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.data.pretrain_dataloader.""" | |
import itertools | |
import os | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.data import pretrain_dataloader | |
def create_int_feature(values): | |
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return f | |
def _create_fake_bert_dataset( | |
output_path, | |
seq_length, | |
max_predictions_per_seq, | |
use_position_id, | |
use_next_sentence_label, | |
use_v2_feature_names=False): | |
"""Creates a fake dataset.""" | |
writer = tf.io.TFRecordWriter(output_path) | |
def create_float_feature(values): | |
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return f | |
for _ in range(100): | |
features = {} | |
input_ids = np.random.randint(100, size=(seq_length)) | |
features["input_mask"] = create_int_feature(np.ones_like(input_ids)) | |
if use_v2_feature_names: | |
features["input_word_ids"] = create_int_feature(input_ids) | |
features["input_type_ids"] = create_int_feature(np.ones_like(input_ids)) | |
else: | |
features["input_ids"] = create_int_feature(input_ids) | |
features["segment_ids"] = create_int_feature(np.ones_like(input_ids)) | |
features["masked_lm_positions"] = create_int_feature( | |
np.random.randint(100, size=(max_predictions_per_seq))) | |
features["masked_lm_ids"] = create_int_feature( | |
np.random.randint(100, size=(max_predictions_per_seq))) | |
features["masked_lm_weights"] = create_float_feature( | |
[1.0] * max_predictions_per_seq) | |
if use_next_sentence_label: | |
features["next_sentence_labels"] = create_int_feature([1]) | |
if use_position_id: | |
features["position_ids"] = create_int_feature(range(0, seq_length)) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
def _create_fake_xlnet_dataset( | |
output_path, seq_length, max_predictions_per_seq): | |
"""Creates a fake dataset.""" | |
writer = tf.io.TFRecordWriter(output_path) | |
for _ in range(100): | |
features = {} | |
input_ids = np.random.randint(100, size=(seq_length)) | |
num_boundary_indices = np.random.randint(1, seq_length) | |
if max_predictions_per_seq is not None: | |
input_mask = np.zeros_like(input_ids) | |
input_mask[:max_predictions_per_seq] = 1 | |
np.random.shuffle(input_mask) | |
else: | |
input_mask = np.ones_like(input_ids) | |
features["input_mask"] = create_int_feature(input_mask) | |
features["input_word_ids"] = create_int_feature(input_ids) | |
features["input_type_ids"] = create_int_feature(np.ones_like(input_ids)) | |
features["boundary_indices"] = create_int_feature( | |
sorted(np.random.randint(seq_length, size=(num_boundary_indices)))) | |
features["target"] = create_int_feature(input_ids + 1) | |
features["label"] = create_int_feature([1]) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
class BertPretrainDataTest(tf.test.TestCase, parameterized.TestCase): | |
def test_load_data(self, use_next_sentence_label, use_position_id): | |
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record") | |
seq_length = 128 | |
max_predictions_per_seq = 20 | |
_create_fake_bert_dataset( | |
train_data_path, | |
seq_length, | |
max_predictions_per_seq, | |
use_next_sentence_label=use_next_sentence_label, | |
use_position_id=use_position_id) | |
data_config = pretrain_dataloader.BertPretrainDataConfig( | |
input_path=train_data_path, | |
max_predictions_per_seq=max_predictions_per_seq, | |
seq_length=seq_length, | |
global_batch_size=10, | |
is_training=True, | |
use_next_sentence_label=use_next_sentence_label, | |
use_position_id=use_position_id) | |
dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
self.assertLen(features, | |
6 + int(use_next_sentence_label) + int(use_position_id)) | |
self.assertIn("input_word_ids", features) | |
self.assertIn("input_mask", features) | |
self.assertIn("input_type_ids", features) | |
self.assertIn("masked_lm_positions", features) | |
self.assertIn("masked_lm_ids", features) | |
self.assertIn("masked_lm_weights", features) | |
self.assertEqual("next_sentence_labels" in features, | |
use_next_sentence_label) | |
self.assertEqual("position_ids" in features, use_position_id) | |
def test_v2_feature_names(self): | |
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record") | |
seq_length = 128 | |
max_predictions_per_seq = 20 | |
_create_fake_bert_dataset( | |
train_data_path, | |
seq_length, | |
max_predictions_per_seq, | |
use_next_sentence_label=True, | |
use_position_id=False, | |
use_v2_feature_names=True) | |
data_config = pretrain_dataloader.BertPretrainDataConfig( | |
input_path=train_data_path, | |
max_predictions_per_seq=max_predictions_per_seq, | |
seq_length=seq_length, | |
global_batch_size=10, | |
is_training=True, | |
use_next_sentence_label=True, | |
use_position_id=False, | |
use_v2_feature_names=True) | |
dataset = pretrain_dataloader.BertPretrainDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
self.assertIn("input_word_ids", features) | |
self.assertIn("input_mask", features) | |
self.assertIn("input_type_ids", features) | |
self.assertIn("masked_lm_positions", features) | |
self.assertIn("masked_lm_ids", features) | |
self.assertIn("masked_lm_weights", features) | |
class XLNetPretrainDataTest(parameterized.TestCase, tf.test.TestCase): | |
def test_load_data( | |
self, sample_strategy, reuse_length, max_predictions_per_seq): | |
train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record") | |
seq_length = 128 | |
batch_size = 5 | |
_create_fake_xlnet_dataset( | |
train_data_path, seq_length, max_predictions_per_seq) | |
data_config = pretrain_dataloader.XLNetPretrainDataConfig( | |
input_path=train_data_path, | |
max_predictions_per_seq=max_predictions_per_seq, | |
seq_length=seq_length, | |
global_batch_size=batch_size, | |
is_training=True, | |
reuse_length=reuse_length, | |
sample_strategy=sample_strategy, | |
min_num_tokens=1, | |
max_num_tokens=2, | |
permutation_size=seq_length // 2, | |
leak_ratio=0.1) | |
if max_predictions_per_seq is None: | |
with self.assertRaises(ValueError): | |
dataset = pretrain_dataloader.XLNetPretrainDataLoader( | |
data_config).load() | |
features = next(iter(dataset)) | |
else: | |
dataset = pretrain_dataloader.XLNetPretrainDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
self.assertIn("input_word_ids", features) | |
self.assertIn("input_type_ids", features) | |
self.assertIn("permutation_mask", features) | |
self.assertIn("masked_tokens", features) | |
self.assertIn("target", features) | |
self.assertIn("target_mask", features) | |
self.assertAllClose(features["input_word_ids"].shape, | |
(batch_size, seq_length)) | |
self.assertAllClose(features["input_type_ids"].shape, | |
(batch_size, seq_length)) | |
self.assertAllClose(features["permutation_mask"].shape, | |
(batch_size, seq_length, seq_length)) | |
self.assertAllClose(features["masked_tokens"].shape, | |
(batch_size, seq_length,)) | |
if max_predictions_per_seq is not None: | |
self.assertIn("target_mapping", features) | |
self.assertAllClose(features["target_mapping"].shape, | |
(batch_size, max_predictions_per_seq, seq_length)) | |
self.assertAllClose(features["target_mask"].shape, | |
(batch_size, max_predictions_per_seq)) | |
self.assertAllClose(features["target"].shape, | |
(batch_size, max_predictions_per_seq)) | |
else: | |
self.assertAllClose(features["target_mask"].shape, | |
(batch_size, seq_length)) | |
self.assertAllClose(features["target"].shape, | |
(batch_size, seq_length)) | |
if __name__ == "__main__": | |
tf.test.main() | |