Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for official.nlp.data.sentence_prediction_dataloader.""" | |
import os | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from sentencepiece import SentencePieceTrainer | |
from official.nlp.data import sentence_prediction_dataloader as loader | |
def _create_fake_preprocessed_dataset(output_path, seq_length, label_type): | |
"""Creates a fake dataset.""" | |
writer = tf.io.TFRecordWriter(output_path) | |
def create_int_feature(values): | |
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return f | |
def create_float_feature(values): | |
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return f | |
for _ in range(100): | |
features = {} | |
input_ids = np.random.randint(100, size=(seq_length)) | |
features['input_ids'] = create_int_feature(input_ids) | |
features['input_mask'] = create_int_feature(np.ones_like(input_ids)) | |
features['segment_ids'] = create_int_feature(np.ones_like(input_ids)) | |
if label_type == 'int': | |
features['label_ids'] = create_int_feature([1]) | |
elif label_type == 'float': | |
features['label_ids'] = create_float_feature([0.5]) | |
else: | |
raise ValueError('Unsupported label_type: %s' % label_type) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
def _create_fake_raw_dataset(output_path, text_fields, label_type): | |
"""Creates a fake tf record file.""" | |
writer = tf.io.TFRecordWriter(output_path) | |
def create_str_feature(value): | |
f = tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) | |
return f | |
def create_int_feature(values): | |
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) | |
return f | |
def create_float_feature(values): | |
f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) | |
return f | |
for _ in range(100): | |
features = {} | |
for text_field in text_fields: | |
features[text_field] = create_str_feature([b'hello world']) | |
if label_type == 'int': | |
features['label'] = create_int_feature([0]) | |
elif label_type == 'float': | |
features['label'] = create_float_feature([0.5]) | |
else: | |
raise ValueError('Unexpected label_type: %s' % label_type) | |
tf_example = tf.train.Example(features=tf.train.Features(feature=features)) | |
writer.write(tf_example.SerializeToString()) | |
writer.close() | |
def _create_fake_sentencepiece_model(output_dir): | |
vocab = ['a', 'b', 'c', 'd', 'e', 'abc', 'def', 'ABC', 'DEF'] | |
model_prefix = os.path.join(output_dir, 'spm_model') | |
input_text_file_path = os.path.join(output_dir, 'train_input.txt') | |
with tf.io.gfile.GFile(input_text_file_path, 'w') as f: | |
f.write(' '.join(vocab + ['\n'])) | |
# Add 7 more tokens: <pad>, <unk>, [CLS], [SEP], [MASK], <s>, </s>. | |
full_vocab_size = len(vocab) + 7 | |
flags = dict( | |
model_prefix=model_prefix, | |
model_type='word', | |
input=input_text_file_path, | |
pad_id=0, | |
unk_id=1, | |
control_symbols='[CLS],[SEP],[MASK]', | |
vocab_size=full_vocab_size, | |
bos_id=full_vocab_size - 2, | |
eos_id=full_vocab_size - 1) | |
SentencePieceTrainer.Train(' '.join( | |
['--{}={}'.format(k, v) for k, v in flags.items()])) | |
return model_prefix + '.model' | |
def _create_fake_vocab_file(vocab_file_path): | |
tokens = ['[PAD]'] | |
for i in range(1, 100): | |
tokens.append('[unused%d]' % i) | |
tokens.extend(['[UNK]', '[CLS]', '[SEP]', '[MASK]', 'hello', 'world']) | |
with tf.io.gfile.GFile(vocab_file_path, 'w') as outfile: | |
outfile.write('\n'.join(tokens)) | |
class SentencePredictionDataTest(tf.test.TestCase, parameterized.TestCase): | |
def test_load_dataset(self, label_type, expected_label_type): | |
input_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
batch_size = 10 | |
seq_length = 128 | |
_create_fake_preprocessed_dataset(input_path, seq_length, label_type) | |
data_config = loader.SentencePredictionDataConfig( | |
input_path=input_path, | |
seq_length=seq_length, | |
global_batch_size=batch_size, | |
label_type=label_type) | |
dataset = loader.SentencePredictionDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
self.assertCountEqual( | |
['input_word_ids', 'input_type_ids', 'input_mask', 'label_ids'], | |
features.keys()) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['label_ids'].shape, (batch_size,)) | |
self.assertEqual(features['label_ids'].dtype, expected_label_type) | |
def test_load_dataset_with_label_mapping(self): | |
input_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
batch_size = 10 | |
seq_length = 128 | |
_create_fake_preprocessed_dataset(input_path, seq_length, 'int') | |
data_config = loader.SentencePredictionDataConfig( | |
input_path=input_path, | |
seq_length=seq_length, | |
global_batch_size=batch_size, | |
label_type='int', | |
label_name=('label_ids', 'next_sentence_labels')) | |
dataset = loader.SentencePredictionDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
self.assertCountEqual([ | |
'input_word_ids', 'input_mask', 'input_type_ids', | |
'next_sentence_labels', 'label_ids' | |
], features.keys()) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['label_ids'].shape, (batch_size,)) | |
self.assertEqual(features['label_ids'].dtype, tf.int32) | |
self.assertEqual(features['next_sentence_labels'].shape, (batch_size,)) | |
self.assertEqual(features['next_sentence_labels'].dtype, tf.int32) | |
class SentencePredictionTfdsDataLoaderTest(tf.test.TestCase, | |
parameterized.TestCase): | |
def test_python_wordpiece_preprocessing(self, use_tfds): | |
batch_size = 10 | |
seq_length = 256 # Non-default value. | |
lower_case = True | |
tf_record_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
text_fields = ['sentence1', 'sentence2'] | |
if not use_tfds: | |
_create_fake_raw_dataset(tf_record_path, text_fields, label_type='int') | |
vocab_file_path = os.path.join(self.get_temp_dir(), 'vocab.txt') | |
_create_fake_vocab_file(vocab_file_path) | |
data_config = loader.SentencePredictionTextDataConfig( | |
input_path='' if use_tfds else tf_record_path, | |
tfds_name='glue/mrpc' if use_tfds else '', | |
tfds_split='train' if use_tfds else '', | |
text_fields=text_fields, | |
global_batch_size=batch_size, | |
seq_length=seq_length, | |
is_training=True, | |
lower_case=lower_case, | |
vocab_file=vocab_file_path) | |
dataset = loader.SentencePredictionTextDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
label_field = data_config.label_field | |
expected_keys = [ | |
'input_word_ids', 'input_type_ids', 'input_mask', label_field | |
] | |
if use_tfds: | |
expected_keys += ['idx'] | |
self.assertCountEqual(expected_keys, features.keys()) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features[label_field].shape, (batch_size,)) | |
def test_python_sentencepiece_preprocessing(self, use_tfds): | |
batch_size = 10 | |
seq_length = 256 # Non-default value. | |
lower_case = True | |
tf_record_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
text_fields = ['sentence1', 'sentence2'] | |
if not use_tfds: | |
_create_fake_raw_dataset(tf_record_path, text_fields, label_type='int') | |
sp_model_file_path = _create_fake_sentencepiece_model(self.get_temp_dir()) | |
data_config = loader.SentencePredictionTextDataConfig( | |
input_path='' if use_tfds else tf_record_path, | |
tfds_name='glue/mrpc' if use_tfds else '', | |
tfds_split='train' if use_tfds else '', | |
text_fields=text_fields, | |
global_batch_size=batch_size, | |
seq_length=seq_length, | |
is_training=True, | |
lower_case=lower_case, | |
tokenization='SentencePiece', | |
vocab_file=sp_model_file_path, | |
) | |
dataset = loader.SentencePredictionTextDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
label_field = data_config.label_field | |
expected_keys = [ | |
'input_word_ids', 'input_type_ids', 'input_mask', label_field | |
] | |
if use_tfds: | |
expected_keys += ['idx'] | |
self.assertCountEqual(expected_keys, features.keys()) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features[label_field].shape, (batch_size,)) | |
def test_saved_model_preprocessing(self, use_tfds): | |
batch_size = 10 | |
seq_length = 256 # Non-default value. | |
tf_record_path = os.path.join(self.get_temp_dir(), 'train.tf_record') | |
text_fields = ['sentence1', 'sentence2'] | |
if not use_tfds: | |
_create_fake_raw_dataset(tf_record_path, text_fields, label_type='float') | |
vocab_file_path = os.path.join(self.get_temp_dir(), 'vocab.txt') | |
_create_fake_vocab_file(vocab_file_path) | |
data_config = loader.SentencePredictionTextDataConfig( | |
input_path='' if use_tfds else tf_record_path, | |
tfds_name='glue/mrpc' if use_tfds else '', | |
tfds_split='train' if use_tfds else '', | |
text_fields=text_fields, | |
global_batch_size=batch_size, | |
seq_length=seq_length, | |
is_training=True, | |
preprocessing_hub_module_url=( | |
'https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3'), | |
label_type='int' if use_tfds else 'float', | |
) | |
dataset = loader.SentencePredictionTextDataLoader(data_config).load() | |
features = next(iter(dataset)) | |
label_field = data_config.label_field | |
expected_keys = [ | |
'input_word_ids', 'input_type_ids', 'input_mask', label_field | |
] | |
if use_tfds: | |
expected_keys += ['idx'] | |
self.assertCountEqual(expected_keys, features.keys()) | |
self.assertEqual(features['input_word_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_mask'].shape, (batch_size, seq_length)) | |
self.assertEqual(features['input_type_ids'].shape, (batch_size, seq_length)) | |
self.assertEqual(features[label_field].shape, (batch_size,)) | |
if __name__ == '__main__': | |
tf.test.main() | |