Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for ALBERT transformer-based text encoder network.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.networks import albert_encoder | |
class AlbertEncoderTest(tf.test.TestCase, parameterized.TestCase): | |
def tearDown(self): | |
super(AlbertEncoderTest, self).tearDown() | |
tf_keras.mixed_precision.set_global_policy("float32") | |
def test_network_creation(self, expected_dtype): | |
hidden_size = 32 | |
sequence_length = 21 | |
kwargs = dict( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=3) | |
if expected_dtype == tf.float16: | |
tf_keras.mixed_precision.set_global_policy("mixed_float16") | |
# Create a small TransformerEncoder for testing. | |
test_network = albert_encoder.AlbertEncoder(**kwargs) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
expected_data_shape = [None, sequence_length, hidden_size] | |
expected_pooled_shape = [None, hidden_size] | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# If float_dtype is set to float16, the data output is float32 (from a layer | |
# norm) and pool output should be float16. | |
self.assertEqual(tf.float32, data.dtype) | |
self.assertEqual(expected_dtype, pooled.dtype) | |
# ALBERT has additonal 'embedding_hidden_mapping_in' weights and | |
# it shares transformer weights. | |
self.assertNotEmpty( | |
[x for x in test_network.weights if "embedding_projection/" in x.name]) | |
self.assertNotEmpty( | |
[x for x in test_network.weights if "transformer/" in x.name]) | |
self.assertEmpty( | |
[x for x in test_network.weights if "transformer/layer" in x.name]) | |
def test_network_invocation(self): | |
hidden_size = 32 | |
sequence_length = 21 | |
vocab_size = 57 | |
num_types = 7 | |
num_layers = 3 | |
# Create a small TransformerEncoder for testing. | |
test_network = albert_encoder.AlbertEncoder( | |
vocab_size=vocab_size, | |
embedding_width=8, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
num_layers=num_layers, | |
type_vocab_size=num_types) | |
# Create the inputs (note that the first dimension is implicit). | |
word_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
mask = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
type_ids = tf_keras.Input(shape=(sequence_length,), dtype=tf.int32) | |
data, pooled = test_network([word_ids, mask, type_ids]) | |
# Create a model based off of this network: | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
# Invoke the model. We can't validate the output data here (the model is too | |
# complex) but this will catch structural runtime errors. | |
batch_size = 3 | |
word_id_data = np.random.randint( | |
vocab_size, size=(batch_size, sequence_length)) | |
mask_data = np.random.randint(2, size=(batch_size, sequence_length)) | |
type_id_data = np.random.randint( | |
num_types, size=(batch_size, sequence_length)) | |
list_outputs = model.predict([word_id_data, mask_data, type_id_data]) | |
# Creates a TransformerEncoder with max_sequence_length != sequence_length | |
max_sequence_length = 128 | |
test_network = albert_encoder.AlbertEncoder( | |
vocab_size=vocab_size, | |
embedding_width=8, | |
hidden_size=hidden_size, | |
max_sequence_length=max_sequence_length, | |
num_attention_heads=2, | |
num_layers=num_layers, | |
type_vocab_size=num_types) | |
model = tf_keras.Model([word_ids, mask, type_ids], [data, pooled]) | |
_ = model.predict([word_id_data, mask_data, type_id_data]) | |
# Tests dictionary outputs. | |
test_network_dict = albert_encoder.AlbertEncoder( | |
vocab_size=vocab_size, | |
embedding_width=8, | |
hidden_size=hidden_size, | |
max_sequence_length=max_sequence_length, | |
num_attention_heads=2, | |
num_layers=num_layers, | |
type_vocab_size=num_types, | |
dict_outputs=True) | |
_ = test_network_dict([word_ids, mask, type_ids]) | |
test_network_dict.set_weights(test_network.get_weights()) | |
list_outputs = test_network([word_id_data, mask_data, type_id_data]) | |
dict_outputs = test_network_dict( | |
dict( | |
input_word_ids=word_id_data, | |
input_mask=mask_data, | |
input_type_ids=type_id_data)) | |
self.assertAllEqual(list_outputs[0], dict_outputs["sequence_output"]) | |
self.assertAllEqual(list_outputs[1], dict_outputs["pooled_output"]) | |
self.assertLen(dict_outputs["pooled_output"], num_layers) | |
def test_serialize_deserialize(self): | |
tf_keras.mixed_precision.set_global_policy("mixed_float16") | |
# Create a network object that sets all of its config options. | |
kwargs = dict( | |
vocab_size=100, | |
embedding_width=8, | |
hidden_size=32, | |
num_layers=3, | |
num_attention_heads=2, | |
max_sequence_length=21, | |
type_vocab_size=12, | |
intermediate_size=1223, | |
activation="relu", | |
dropout_rate=0.05, | |
attention_dropout_rate=0.22, | |
initializer="glorot_uniform") | |
network = albert_encoder.AlbertEncoder(**kwargs) | |
expected_config = dict(kwargs) | |
expected_config["activation"] = tf_keras.activations.serialize( | |
tf_keras.activations.get(expected_config["activation"])) | |
expected_config["initializer"] = tf_keras.initializers.serialize( | |
tf_keras.initializers.get(expected_config["initializer"])) | |
self.assertEqual(network.get_config(), expected_config) | |
# Create another network object from the first object's config. | |
new_network = ( | |
albert_encoder.AlbertEncoder.from_config( | |
network.get_config())) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
if __name__ == "__main__": | |
tf.test.main() | |