Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for classification network.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.networks import classification | |
class ClassificationTest(tf.test.TestCase, parameterized.TestCase): | |
def test_network_creation(self, num_classes): | |
"""Validate that the Keras object can be created.""" | |
input_width = 512 | |
test_object = classification.Classification( | |
input_width=input_width, num_classes=num_classes) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
cls_data = tf_keras.Input(shape=(input_width,), dtype=tf.float32) | |
output = test_object(cls_data) | |
# Validate that the outputs are of the expected shape. | |
expected_output_shape = [None, num_classes] | |
self.assertEqual(expected_output_shape, output.shape.as_list()) | |
def test_network_invocation(self, num_classes): | |
"""Validate that the Keras object can be invoked.""" | |
input_width = 512 | |
test_object = classification.Classification( | |
input_width=input_width, num_classes=num_classes, output='predictions') | |
# Create a 2-dimensional input (the first dimension is implicit). | |
cls_data = tf_keras.Input(shape=(input_width,), dtype=tf.float32) | |
output = test_object(cls_data) | |
# Invoke the network as part of a Model. | |
model = tf_keras.Model(cls_data, output) | |
input_data = 10 * np.random.random_sample((3, input_width)) | |
_ = model.predict(input_data) | |
def test_network_invocation_with_internal_logits(self): | |
"""Validate that the logit outputs are correct.""" | |
input_width = 512 | |
num_classes = 10 | |
test_object = classification.Classification( | |
input_width=input_width, num_classes=num_classes, output='predictions') | |
# Create a 2-dimensional input (the first dimension is implicit). | |
cls_data = tf_keras.Input(shape=(input_width,), dtype=tf.float32) | |
output = test_object(cls_data) | |
model = tf_keras.Model(cls_data, output) | |
logits_model = tf_keras.Model(test_object.inputs, test_object.logits) | |
batch_size = 3 | |
input_data = 10 * np.random.random_sample((batch_size, input_width)) | |
outputs = model.predict(input_data) | |
logits = logits_model.predict(input_data) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, num_classes) | |
self.assertEqual(expected_output_shape, outputs.shape) | |
self.assertEqual(expected_output_shape, logits.shape) | |
# Ensure that the logits, when softmaxed, create the outputs. | |
input_tensor = tf_keras.Input(expected_output_shape[1:]) | |
output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor) | |
softmax_model = tf_keras.Model(input_tensor, output_tensor) | |
calculated_softmax = softmax_model.predict(logits) | |
self.assertAllClose(outputs, calculated_softmax) | |
def test_network_invocation_with_internal_and_external_logits( | |
self, num_classes): | |
"""Validate that the logit outputs are correct.""" | |
input_width = 512 | |
test_object = classification.Classification( | |
input_width=input_width, num_classes=num_classes, output='logits') | |
# Create a 2-dimensional input (the first dimension is implicit). | |
cls_data = tf_keras.Input(shape=(input_width,), dtype=tf.float32) | |
output = test_object(cls_data) | |
model = tf_keras.Model(cls_data, output) | |
logits_model = tf_keras.Model(test_object.inputs, test_object.logits) | |
batch_size = 3 | |
input_data = 10 * np.random.random_sample((batch_size, input_width)) | |
outputs = model.predict(input_data) | |
logits = logits_model.predict(input_data) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, num_classes) | |
self.assertEqual(expected_output_shape, outputs.shape) | |
self.assertEqual(expected_output_shape, logits.shape) | |
self.assertAllClose(outputs, logits) | |
def test_network_invocation_with_logit_output(self): | |
"""Validate that the logit outputs are correct.""" | |
input_width = 512 | |
num_classes = 10 | |
test_object = classification.Classification( | |
input_width=input_width, num_classes=num_classes, output='predictions') | |
logit_object = classification.Classification( | |
input_width=input_width, num_classes=num_classes, output='logits') | |
logit_object.set_weights(test_object.get_weights()) | |
# Create a 2-dimensional input (the first dimension is implicit). | |
cls_data = tf_keras.Input(shape=(input_width,), dtype=tf.float32) | |
output = test_object(cls_data) | |
logit_output = logit_object(cls_data) | |
model = tf_keras.Model(cls_data, output) | |
logits_model = tf_keras.Model(cls_data, logit_output) | |
batch_size = 3 | |
input_data = 10 * np.random.random_sample((batch_size, input_width)) | |
outputs = model.predict(input_data) | |
logits = logits_model.predict(input_data) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, num_classes) | |
self.assertEqual(expected_output_shape, outputs.shape) | |
self.assertEqual(expected_output_shape, logits.shape) | |
# Ensure that the logits, when softmaxed, create the outputs. | |
input_tensor = tf_keras.Input(expected_output_shape[1:]) | |
output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor) | |
softmax_model = tf_keras.Model(input_tensor, output_tensor) | |
calculated_softmax = softmax_model.predict(logits) | |
self.assertAllClose(outputs, calculated_softmax) | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
network = classification.Classification( | |
input_width=128, | |
num_classes=10, | |
initializer='zeros', | |
output='predictions') | |
# Create another network object from the first object's config. | |
new_network = classification.Classification.from_config( | |
network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
def test_unknown_output_type_fails(self): | |
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'): | |
_ = classification.Classification( | |
input_width=128, num_classes=10, output='bad') | |
if __name__ == '__main__': | |
tf.test.main() | |