Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for span_labeling network.""" | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.networks import span_labeling | |
class SpanLabelingTest(tf.test.TestCase): | |
def test_network_creation(self): | |
"""Validate that the Keras object can be created.""" | |
sequence_length = 15 | |
input_width = 512 | |
test_network = span_labeling.SpanLabeling( | |
input_width=input_width, output='predictions') | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_data = tf_keras.Input( | |
shape=(sequence_length, input_width), dtype=tf.float32) | |
start_outputs, end_outputs = test_network(sequence_data) | |
# Validate that the outputs are of the expected shape. | |
expected_output_shape = [None, sequence_length] | |
self.assertEqual(expected_output_shape, start_outputs.shape.as_list()) | |
self.assertEqual(expected_output_shape, end_outputs.shape.as_list()) | |
def test_network_invocation(self): | |
"""Validate that the Keras object can be invoked.""" | |
sequence_length = 15 | |
input_width = 512 | |
test_network = span_labeling.SpanLabeling(input_width=input_width) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_data = tf_keras.Input( | |
shape=(sequence_length, input_width), dtype=tf.float32) | |
outputs = test_network(sequence_data) | |
model = tf_keras.Model(sequence_data, outputs) | |
# Invoke the network as part of a Model. | |
batch_size = 3 | |
input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, input_width)) | |
start_outputs, end_outputs = model.predict(input_data) | |
# Validate that the outputs are of the expected shape. | |
expected_output_shape = (batch_size, sequence_length) | |
self.assertEqual(expected_output_shape, start_outputs.shape) | |
self.assertEqual(expected_output_shape, end_outputs.shape) | |
def test_network_invocation_with_internal_logit_output(self): | |
"""Validate that the logit outputs are correct.""" | |
sequence_length = 15 | |
input_width = 512 | |
test_network = span_labeling.SpanLabeling( | |
input_width=input_width, output='predictions') | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_data = tf_keras.Input( | |
shape=(sequence_length, input_width), dtype=tf.float32) | |
output = test_network(sequence_data) | |
model = tf_keras.Model(sequence_data, output) | |
logit_model = tf_keras.Model( | |
test_network.inputs, | |
[test_network.start_logits, test_network.end_logits]) | |
batch_size = 3 | |
input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, input_width)) | |
start_outputs, end_outputs = model.predict(input_data) | |
start_logits, end_logits = logit_model.predict(input_data) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, sequence_length) | |
self.assertEqual(expected_output_shape, start_outputs.shape) | |
self.assertEqual(expected_output_shape, end_outputs.shape) | |
self.assertEqual(expected_output_shape, start_logits.shape) | |
self.assertEqual(expected_output_shape, end_logits.shape) | |
# Ensure that the logits, when softmaxed, create the outputs. | |
input_tensor = tf_keras.Input(expected_output_shape[1:]) | |
output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor) | |
softmax_model = tf_keras.Model(input_tensor, output_tensor) | |
start_softmax = softmax_model.predict(start_logits) | |
self.assertAllClose(start_outputs, start_softmax) | |
end_softmax = softmax_model.predict(end_logits) | |
self.assertAllClose(end_outputs, end_softmax) | |
def test_network_invocation_with_external_logit_output(self): | |
"""Validate that the logit outputs are correct.""" | |
sequence_length = 15 | |
input_width = 512 | |
test_network = span_labeling.SpanLabeling( | |
input_width=input_width, output='predictions') | |
logit_network = span_labeling.SpanLabeling( | |
input_width=input_width, output='logits') | |
logit_network.set_weights(test_network.get_weights()) | |
# Create a 3-dimensional input (the first dimension is implicit). | |
sequence_data = tf_keras.Input( | |
shape=(sequence_length, input_width), dtype=tf.float32) | |
output = test_network(sequence_data) | |
logit_output = logit_network(sequence_data) | |
model = tf_keras.Model(sequence_data, output) | |
logit_model = tf_keras.Model(sequence_data, logit_output) | |
batch_size = 3 | |
input_data = 10 * np.random.random_sample( | |
(batch_size, sequence_length, input_width)) | |
start_outputs, end_outputs = model.predict(input_data) | |
start_logits, end_logits = logit_model.predict(input_data) | |
# Ensure that the tensor shapes are correct. | |
expected_output_shape = (batch_size, sequence_length) | |
self.assertEqual(expected_output_shape, start_outputs.shape) | |
self.assertEqual(expected_output_shape, end_outputs.shape) | |
self.assertEqual(expected_output_shape, start_logits.shape) | |
self.assertEqual(expected_output_shape, end_logits.shape) | |
# Ensure that the logits, when softmaxed, create the outputs. | |
input_tensor = tf_keras.Input(expected_output_shape[1:]) | |
output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor) | |
softmax_model = tf_keras.Model(input_tensor, output_tensor) | |
start_softmax = softmax_model.predict(start_logits) | |
self.assertAllClose(start_outputs, start_softmax) | |
end_softmax = softmax_model.predict(end_logits) | |
self.assertAllClose(end_outputs, end_softmax) | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
network = span_labeling.SpanLabeling( | |
input_width=128, | |
activation='relu', | |
initializer='zeros', | |
output='predictions') | |
# Create another network object from the first object's config. | |
new_network = span_labeling.SpanLabeling.from_config(network.get_config()) | |
# Validate that the config can be forced to JSON. | |
_ = new_network.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
def test_unknown_output_type_fails(self): | |
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'): | |
_ = span_labeling.SpanLabeling(input_width=10, output='bad') | |
class XLNetSpanLabelingTest(tf.test.TestCase): | |
def test_basic_invocation_train(self): | |
batch_size = 2 | |
seq_length = 8 | |
hidden_size = 4 | |
sequence_data = np.random.uniform( | |
size=(batch_size, seq_length, hidden_size)).astype('float32') | |
paragraph_mask = np.random.uniform( | |
size=(batch_size, seq_length)).astype('float32') | |
class_index = np.random.uniform(size=(batch_size)).astype('uint8') | |
start_positions = np.zeros(shape=(batch_size)).astype('uint8') | |
layer = span_labeling.XLNetSpanLabeling( | |
input_width=hidden_size, | |
start_n_top=2, | |
end_n_top=2, | |
activation='tanh', | |
dropout_rate=0., | |
initializer='glorot_uniform') | |
output = layer(sequence_data=sequence_data, | |
class_index=class_index, | |
paragraph_mask=paragraph_mask, | |
start_positions=start_positions, | |
training=True) | |
expected_keys = { | |
'start_logits', 'end_logits', 'class_logits', 'start_predictions', | |
'end_predictions', | |
} | |
self.assertSetEqual(expected_keys, set(output.keys())) | |
def test_basic_invocation_beam_search(self): | |
batch_size = 2 | |
seq_length = 8 | |
hidden_size = 4 | |
top_n = 5 | |
sequence_data = np.random.uniform( | |
size=(batch_size, seq_length, hidden_size)).astype('float32') | |
paragraph_mask = np.random.uniform( | |
size=(batch_size, seq_length)).astype('float32') | |
class_index = np.random.uniform(size=(batch_size)).astype('uint8') | |
layer = span_labeling.XLNetSpanLabeling( | |
input_width=hidden_size, | |
start_n_top=top_n, | |
end_n_top=top_n, | |
activation='tanh', | |
dropout_rate=0., | |
initializer='glorot_uniform') | |
output = layer(sequence_data=sequence_data, | |
class_index=class_index, | |
paragraph_mask=paragraph_mask, | |
training=False) | |
expected_keys = { | |
'start_top_predictions', 'end_top_predictions', 'class_logits', | |
'start_top_index', 'end_top_index', 'start_logits', | |
'end_logits', 'start_predictions', 'end_predictions' | |
} | |
self.assertSetEqual(expected_keys, set(output.keys())) | |
def test_subclass_invocation(self): | |
"""Tests basic invocation of this layer wrapped in a subclass.""" | |
seq_length = 8 | |
hidden_size = 4 | |
batch_size = 2 | |
sequence_data = tf_keras.Input(shape=(seq_length, hidden_size), | |
dtype=tf.float32) | |
class_index = tf_keras.Input(shape=(), dtype=tf.uint8) | |
paragraph_mask = tf_keras.Input(shape=(seq_length), dtype=tf.float32) | |
start_positions = tf_keras.Input(shape=(), dtype=tf.int32) | |
layer = span_labeling.XLNetSpanLabeling( | |
input_width=hidden_size, | |
start_n_top=5, | |
end_n_top=5, | |
activation='tanh', | |
dropout_rate=0., | |
initializer='glorot_uniform') | |
output = layer(sequence_data=sequence_data, | |
class_index=class_index, | |
paragraph_mask=paragraph_mask, | |
start_positions=start_positions) | |
model = tf_keras.Model( | |
inputs={ | |
'sequence_data': sequence_data, | |
'class_index': class_index, | |
'paragraph_mask': paragraph_mask, | |
'start_positions': start_positions, | |
}, | |
outputs=output) | |
sequence_data = tf.random.uniform( | |
shape=(batch_size, seq_length, hidden_size), dtype=tf.float32) | |
paragraph_mask = tf.random.uniform( | |
shape=(batch_size, seq_length), dtype=tf.float32) | |
class_index = tf.ones(shape=(batch_size,), dtype=tf.uint8) | |
start_positions = tf.random.uniform( | |
shape=(batch_size,), maxval=5, dtype=tf.int32) | |
inputs = dict(sequence_data=sequence_data, | |
paragraph_mask=paragraph_mask, | |
class_index=class_index, | |
start_positions=start_positions) | |
output = model(inputs) | |
self.assertIsInstance(output, dict) | |
# Test `call` without training flag. | |
output = model(inputs, training=False) | |
self.assertIsInstance(output, dict) | |
# Test `call` with training flag. | |
# Note: this fails due to incompatibility with the functional API. | |
with self.assertRaisesRegex(AssertionError, | |
'Could not compute output KerasTensor'): | |
model(inputs, training=True) | |
def test_serialize_deserialize(self): | |
# Create a network object that sets all of its config options. | |
network = span_labeling.XLNetSpanLabeling( | |
input_width=128, | |
start_n_top=5, | |
end_n_top=1, | |
activation='tanh', | |
dropout_rate=0.34, | |
initializer='zeros') | |
# Create another network object from the first object's config. | |
new_network = span_labeling.XLNetSpanLabeling.from_config( | |
network.get_config()) | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(network.get_config(), new_network.get_config()) | |
if __name__ == '__main__': | |
tf.test.main() | |