deanna-emery's picture
updates
93528c6
raw
history blame
12 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for span_labeling network."""
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.modeling.networks import span_labeling
class SpanLabelingTest(tf.test.TestCase):
def test_network_creation(self):
"""Validate that the Keras object can be created."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(
input_width=input_width, output='predictions')
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf_keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
start_outputs, end_outputs = test_network(sequence_data)
# Validate that the outputs are of the expected shape.
expected_output_shape = [None, sequence_length]
self.assertEqual(expected_output_shape, start_outputs.shape.as_list())
self.assertEqual(expected_output_shape, end_outputs.shape.as_list())
def test_network_invocation(self):
"""Validate that the Keras object can be invoked."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(input_width=input_width)
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf_keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
outputs = test_network(sequence_data)
model = tf_keras.Model(sequence_data, outputs)
# Invoke the network as part of a Model.
batch_size = 3
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, input_width))
start_outputs, end_outputs = model.predict(input_data)
# Validate that the outputs are of the expected shape.
expected_output_shape = (batch_size, sequence_length)
self.assertEqual(expected_output_shape, start_outputs.shape)
self.assertEqual(expected_output_shape, end_outputs.shape)
def test_network_invocation_with_internal_logit_output(self):
"""Validate that the logit outputs are correct."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(
input_width=input_width, output='predictions')
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf_keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
output = test_network(sequence_data)
model = tf_keras.Model(sequence_data, output)
logit_model = tf_keras.Model(
test_network.inputs,
[test_network.start_logits, test_network.end_logits])
batch_size = 3
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, input_width))
start_outputs, end_outputs = model.predict(input_data)
start_logits, end_logits = logit_model.predict(input_data)
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, sequence_length)
self.assertEqual(expected_output_shape, start_outputs.shape)
self.assertEqual(expected_output_shape, end_outputs.shape)
self.assertEqual(expected_output_shape, start_logits.shape)
self.assertEqual(expected_output_shape, end_logits.shape)
# Ensure that the logits, when softmaxed, create the outputs.
input_tensor = tf_keras.Input(expected_output_shape[1:])
output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
softmax_model = tf_keras.Model(input_tensor, output_tensor)
start_softmax = softmax_model.predict(start_logits)
self.assertAllClose(start_outputs, start_softmax)
end_softmax = softmax_model.predict(end_logits)
self.assertAllClose(end_outputs, end_softmax)
def test_network_invocation_with_external_logit_output(self):
"""Validate that the logit outputs are correct."""
sequence_length = 15
input_width = 512
test_network = span_labeling.SpanLabeling(
input_width=input_width, output='predictions')
logit_network = span_labeling.SpanLabeling(
input_width=input_width, output='logits')
logit_network.set_weights(test_network.get_weights())
# Create a 3-dimensional input (the first dimension is implicit).
sequence_data = tf_keras.Input(
shape=(sequence_length, input_width), dtype=tf.float32)
output = test_network(sequence_data)
logit_output = logit_network(sequence_data)
model = tf_keras.Model(sequence_data, output)
logit_model = tf_keras.Model(sequence_data, logit_output)
batch_size = 3
input_data = 10 * np.random.random_sample(
(batch_size, sequence_length, input_width))
start_outputs, end_outputs = model.predict(input_data)
start_logits, end_logits = logit_model.predict(input_data)
# Ensure that the tensor shapes are correct.
expected_output_shape = (batch_size, sequence_length)
self.assertEqual(expected_output_shape, start_outputs.shape)
self.assertEqual(expected_output_shape, end_outputs.shape)
self.assertEqual(expected_output_shape, start_logits.shape)
self.assertEqual(expected_output_shape, end_logits.shape)
# Ensure that the logits, when softmaxed, create the outputs.
input_tensor = tf_keras.Input(expected_output_shape[1:])
output_tensor = tf_keras.layers.Activation(tf.nn.log_softmax)(input_tensor)
softmax_model = tf_keras.Model(input_tensor, output_tensor)
start_softmax = softmax_model.predict(start_logits)
self.assertAllClose(start_outputs, start_softmax)
end_softmax = softmax_model.predict(end_logits)
self.assertAllClose(end_outputs, end_softmax)
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
network = span_labeling.SpanLabeling(
input_width=128,
activation='relu',
initializer='zeros',
output='predictions')
# Create another network object from the first object's config.
new_network = span_labeling.SpanLabeling.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
def test_unknown_output_type_fails(self):
with self.assertRaisesRegex(ValueError, 'Unknown `output` value "bad".*'):
_ = span_labeling.SpanLabeling(input_width=10, output='bad')
class XLNetSpanLabelingTest(tf.test.TestCase):
def test_basic_invocation_train(self):
batch_size = 2
seq_length = 8
hidden_size = 4
sequence_data = np.random.uniform(
size=(batch_size, seq_length, hidden_size)).astype('float32')
paragraph_mask = np.random.uniform(
size=(batch_size, seq_length)).astype('float32')
class_index = np.random.uniform(size=(batch_size)).astype('uint8')
start_positions = np.zeros(shape=(batch_size)).astype('uint8')
layer = span_labeling.XLNetSpanLabeling(
input_width=hidden_size,
start_n_top=2,
end_n_top=2,
activation='tanh',
dropout_rate=0.,
initializer='glorot_uniform')
output = layer(sequence_data=sequence_data,
class_index=class_index,
paragraph_mask=paragraph_mask,
start_positions=start_positions,
training=True)
expected_keys = {
'start_logits', 'end_logits', 'class_logits', 'start_predictions',
'end_predictions',
}
self.assertSetEqual(expected_keys, set(output.keys()))
def test_basic_invocation_beam_search(self):
batch_size = 2
seq_length = 8
hidden_size = 4
top_n = 5
sequence_data = np.random.uniform(
size=(batch_size, seq_length, hidden_size)).astype('float32')
paragraph_mask = np.random.uniform(
size=(batch_size, seq_length)).astype('float32')
class_index = np.random.uniform(size=(batch_size)).astype('uint8')
layer = span_labeling.XLNetSpanLabeling(
input_width=hidden_size,
start_n_top=top_n,
end_n_top=top_n,
activation='tanh',
dropout_rate=0.,
initializer='glorot_uniform')
output = layer(sequence_data=sequence_data,
class_index=class_index,
paragraph_mask=paragraph_mask,
training=False)
expected_keys = {
'start_top_predictions', 'end_top_predictions', 'class_logits',
'start_top_index', 'end_top_index', 'start_logits',
'end_logits', 'start_predictions', 'end_predictions'
}
self.assertSetEqual(expected_keys, set(output.keys()))
def test_subclass_invocation(self):
"""Tests basic invocation of this layer wrapped in a subclass."""
seq_length = 8
hidden_size = 4
batch_size = 2
sequence_data = tf_keras.Input(shape=(seq_length, hidden_size),
dtype=tf.float32)
class_index = tf_keras.Input(shape=(), dtype=tf.uint8)
paragraph_mask = tf_keras.Input(shape=(seq_length), dtype=tf.float32)
start_positions = tf_keras.Input(shape=(), dtype=tf.int32)
layer = span_labeling.XLNetSpanLabeling(
input_width=hidden_size,
start_n_top=5,
end_n_top=5,
activation='tanh',
dropout_rate=0.,
initializer='glorot_uniform')
output = layer(sequence_data=sequence_data,
class_index=class_index,
paragraph_mask=paragraph_mask,
start_positions=start_positions)
model = tf_keras.Model(
inputs={
'sequence_data': sequence_data,
'class_index': class_index,
'paragraph_mask': paragraph_mask,
'start_positions': start_positions,
},
outputs=output)
sequence_data = tf.random.uniform(
shape=(batch_size, seq_length, hidden_size), dtype=tf.float32)
paragraph_mask = tf.random.uniform(
shape=(batch_size, seq_length), dtype=tf.float32)
class_index = tf.ones(shape=(batch_size,), dtype=tf.uint8)
start_positions = tf.random.uniform(
shape=(batch_size,), maxval=5, dtype=tf.int32)
inputs = dict(sequence_data=sequence_data,
paragraph_mask=paragraph_mask,
class_index=class_index,
start_positions=start_positions)
output = model(inputs)
self.assertIsInstance(output, dict)
# Test `call` without training flag.
output = model(inputs, training=False)
self.assertIsInstance(output, dict)
# Test `call` with training flag.
# Note: this fails due to incompatibility with the functional API.
with self.assertRaisesRegex(AssertionError,
'Could not compute output KerasTensor'):
model(inputs, training=True)
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
network = span_labeling.XLNetSpanLabeling(
input_width=128,
start_n_top=5,
end_n_top=1,
activation='tanh',
dropout_rate=0.34,
initializer='zeros')
# Create another network object from the first object's config.
new_network = span_labeling.XLNetSpanLabeling.from_config(
network.get_config())
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()