Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for Sparse Mixer encoder network.""" | |
from typing import Sequence | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling import layers | |
from official.nlp.modeling.networks import sparse_mixer | |
class SparseMixerTest(parameterized.TestCase, tf.test.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
tf_keras.mixed_precision.set_global_policy("float32") | |
def test_network(self, mixing_mechanism: layers.MixingMechanism, | |
attention_layers: Sequence[int], moe_layers: Sequence[int]): | |
num_layers = 3 | |
hidden_size = 16 | |
sequence_length = 32 | |
test_network = sparse_mixer.SparseMixer( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
max_sequence_length=sequence_length, | |
num_layers=num_layers, | |
moe_layers=moe_layers, | |
num_experts=8, | |
mixing_mechanism=mixing_mechanism, | |
attention_layers=attention_layers) | |
batch_size = 4 | |
word_ids = tf_keras.Input( | |
shape=(sequence_length,), batch_size=batch_size, dtype=tf.int32) | |
mask = tf_keras.Input( | |
shape=(sequence_length,), batch_size=batch_size, dtype=tf.int32) | |
type_ids = tf_keras.Input( | |
shape=(sequence_length,), batch_size=batch_size, dtype=tf.int32) | |
dict_outputs = test_network( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
data = dict_outputs["sequence_output"] | |
pooled = dict_outputs["pooled_output"] | |
self.assertIsInstance(test_network.transformer_layers, list) | |
self.assertLen(test_network.transformer_layers, 3) | |
self.assertIsInstance(test_network.pooler_layer, tf_keras.layers.Dense) | |
expected_data_shape = [batch_size, sequence_length, hidden_size] | |
expected_pooled_shape = [batch_size, hidden_size] | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, data.dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
def test_embeddings_as_inputs(self): | |
hidden_size = 32 | |
sequence_length = 8 | |
test_network = sparse_mixer.SparseMixer( | |
vocab_size=100, | |
hidden_size=hidden_size, | |
num_attention_heads=2, | |
max_sequence_length=sequence_length, | |
num_layers=3, | |
moe_layers=(1,), | |
num_experts=4, | |
attention_layers=(2,)) | |
batch_size = 2 | |
word_ids = tf_keras.Input( | |
shape=(sequence_length), batch_size=batch_size, dtype=tf.int32) | |
mask = tf_keras.Input( | |
shape=(sequence_length,), batch_size=batch_size, dtype=tf.int32) | |
type_ids = tf_keras.Input( | |
shape=(sequence_length,), batch_size=batch_size, dtype=tf.int32) | |
test_network.build( | |
dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) | |
embeddings = test_network.get_embedding_layer()(word_ids) | |
# Calls with the embeddings. | |
dict_outputs = test_network( | |
dict( | |
input_word_embeddings=embeddings, | |
input_mask=mask, | |
input_type_ids=type_ids)) | |
all_encoder_outputs = dict_outputs["encoder_outputs"] | |
pooled = dict_outputs["pooled_output"] | |
expected_data_shape = [batch_size, sequence_length, hidden_size] | |
expected_pooled_shape = [batch_size, hidden_size] | |
self.assertLen(all_encoder_outputs, 3) | |
for data in all_encoder_outputs: | |
self.assertAllEqual(expected_data_shape, data.shape.as_list()) | |
self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) | |
# The default output dtype is float32. | |
self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) | |
self.assertAllEqual(tf.float32, pooled.dtype) | |
if __name__ == "__main__": | |
tf.test.main() | |