Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Test decoding utility methods.""" | |
import abc | |
import tensorflow as tf, tf_keras | |
from official.nlp.modeling.ops import decoding_module | |
def length_normalization(length, dtype): | |
"""Return length normalization factor.""" | |
return tf.pow(((5. + tf.cast(length, dtype)) / 6.), 0.0) | |
class TestSubclass(decoding_module.DecodingModule, metaclass=abc.ABCMeta): | |
def __init__(self, | |
length_normalization_fn=length_normalization, | |
extra_cache_output=True, | |
dtype=tf.float32): | |
super(TestSubclass, self).__init__( | |
length_normalization_fn=length_normalization, dtype=dtype) | |
def _create_initial_state(self, initial_ids, initial_cache, batch_size): | |
pass | |
def _grow_alive_seq(self, state, batch_size): | |
pass | |
def _process_finished_state(self, finished_state): | |
pass | |
def _get_new_finished_state(self, state, new_seq, new_log_probs, | |
new_finished_flags, batch_size): | |
pass | |
def _finished_flags(self, topk_ids, state): | |
pass | |
def _continue_search(self, state): | |
pass | |
def _get_new_alive_state(self, new_seq, new_log_probs, new_finished_flags, | |
new_cache): | |
pass | |
class DecodingModuleTest(tf.test.TestCase): | |
def test_get_shape_keep_last_dim(self): | |
y = tf.constant(4.0) | |
x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5]) | |
shape = decoding_module.get_shape_keep_last_dim(x) | |
self.assertAllEqual([None, None, None, 5], shape.as_list()) | |
def test_shape_list(self): | |
x = tf.ones([7, 1]) | |
shape = decoding_module.shape_list(x) | |
self.assertAllEqual([7, 1], shape) | |
def test_inf(self): | |
d = TestSubclass() | |
inf_value = d.inf() | |
self.assertAllEqual(inf_value, tf.constant(10000000., tf.float32)) | |
def test_length_normalization(self): | |
d = TestSubclass() | |
normalized_length = d.length_normalization_fn(32, tf.float32) | |
self.assertAllEqual(normalized_length, tf.constant(1.0, tf.float32)) | |
if __name__ == '__main__': | |
tf.test.main() | |