deanna-emery's picture
updates
93528c6
raw
history blame
2.62 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test decoding utility methods."""
import abc
import tensorflow as tf, tf_keras
from official.nlp.modeling.ops import decoding_module
def length_normalization(length, dtype):
"""Return length normalization factor."""
return tf.pow(((5. + tf.cast(length, dtype)) / 6.), 0.0)
class TestSubclass(decoding_module.DecodingModule, metaclass=abc.ABCMeta):
def __init__(self,
length_normalization_fn=length_normalization,
extra_cache_output=True,
dtype=tf.float32):
super(TestSubclass, self).__init__(
length_normalization_fn=length_normalization, dtype=dtype)
def _create_initial_state(self, initial_ids, initial_cache, batch_size):
pass
def _grow_alive_seq(self, state, batch_size):
pass
def _process_finished_state(self, finished_state):
pass
def _get_new_finished_state(self, state, new_seq, new_log_probs,
new_finished_flags, batch_size):
pass
def _finished_flags(self, topk_ids, state):
pass
def _continue_search(self, state):
pass
def _get_new_alive_state(self, new_seq, new_log_probs, new_finished_flags,
new_cache):
pass
class DecodingModuleTest(tf.test.TestCase):
def test_get_shape_keep_last_dim(self):
y = tf.constant(4.0)
x = tf.ones([7, tf.cast(tf.sqrt(y), tf.int32), 2, 5])
shape = decoding_module.get_shape_keep_last_dim(x)
self.assertAllEqual([None, None, None, 5], shape.as_list())
def test_shape_list(self):
x = tf.ones([7, 1])
shape = decoding_module.shape_list(x)
self.assertAllEqual([7, 1], shape)
def test_inf(self):
d = TestSubclass()
inf_value = d.inf()
self.assertAllEqual(inf_value, tf.constant(10000000., tf.float32))
def test_length_normalization(self):
d = TestSubclass()
normalized_length = d.length_normalization_fn(32, tf.float32)
self.assertAllEqual(normalized_length, tf.constant(1.0, tf.float32))
if __name__ == '__main__':
tf.test.main()