Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for movinet_model.py.""" | |
from absl.testing import parameterized | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
from official.projects.movinet.modeling import movinet | |
from official.projects.movinet.modeling import movinet_model | |
class MovinetModelTest(parameterized.TestCase, tf.test.TestCase): | |
def test_movinet_classifier_creation(self, is_training): | |
"""Test for creation of a Movinet classifier.""" | |
temporal_size = 16 | |
spatial_size = 224 | |
tf_keras.backend.set_image_data_format('channels_last') | |
input_specs = tf_keras.layers.InputSpec( | |
shape=[None, temporal_size, spatial_size, spatial_size, 3]) | |
backbone = movinet.Movinet(model_id='a0', input_specs=input_specs) | |
num_classes = 1000 | |
model = movinet_model.MovinetClassifier( | |
backbone=backbone, | |
num_classes=num_classes, | |
input_specs={'image': input_specs}, | |
dropout_rate=0.2) | |
inputs = np.random.rand(2, temporal_size, spatial_size, spatial_size, 3) | |
logits = model(inputs, training=is_training) | |
self.assertAllEqual([2, num_classes], logits.shape) | |
def test_movinet_classifier_stream(self): | |
"""Test if the classifier can be run in streaming mode.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = movinet.Movinet( | |
model_id='a0', | |
causal=True, | |
use_external_states=True, | |
) | |
model = movinet_model.MovinetClassifier( | |
backbone, num_classes=600, output_states=True) | |
inputs = tf.ones([1, 8, 172, 172, 3]) | |
init_states = model.init_states(tf.shape(inputs)) | |
expected, _ = model({**init_states, 'image': inputs}) | |
frames = tf.split(inputs, inputs.shape[1], axis=1) | |
states = init_states | |
for frame in frames: | |
output, states = model({**states, 'image': frame}) | |
predicted = output | |
self.assertEqual(predicted.shape, expected.shape) | |
self.assertAllClose(predicted, expected, 1e-5, 1e-5) | |
def test_movinet_classifier_stream_pos_enc(self): | |
"""Test if the classifier can be run in streaming mode with pos encoding.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = movinet.Movinet( | |
model_id='a0', | |
causal=True, | |
use_external_states=True, | |
use_positional_encoding=True, | |
) | |
model = movinet_model.MovinetClassifier( | |
backbone, num_classes=600, output_states=True) | |
inputs = tf.ones([1, 8, 172, 172, 3]) | |
init_states = model.init_states(tf.shape(inputs)) | |
expected, _ = model({**init_states, 'image': inputs}) | |
frames = tf.split(inputs, inputs.shape[1], axis=1) | |
states = init_states | |
for frame in frames: | |
output, states = model({**states, 'image': frame}) | |
predicted = output | |
self.assertEqual(predicted.shape, expected.shape) | |
self.assertAllClose(predicted, expected, 1e-5, 1e-5) | |
def test_movinet_classifier_stream_pos_enc_2plus1d(self): | |
"""Test if the model can run in streaming mode with pos encoding, (2+1)D.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = movinet.Movinet( | |
model_id='a0', | |
causal=True, | |
use_external_states=True, | |
use_positional_encoding=True, | |
conv_type='2plus1d', | |
) | |
model = movinet_model.MovinetClassifier( | |
backbone, num_classes=600, output_states=True) | |
inputs = tf.ones([1, 8, 172, 172, 3]) | |
init_states = model.init_states(tf.shape(inputs)) | |
expected, _ = model({**init_states, 'image': inputs}) | |
frames = tf.split(inputs, inputs.shape[1], axis=1) | |
states = init_states | |
for frame in frames: | |
output, states = model({**states, 'image': frame}) | |
predicted = output | |
self.assertEqual(predicted.shape, expected.shape) | |
self.assertAllClose(predicted, expected, 1e-5, 1e-5) | |
def test_movinet_classifier_mobile(self): | |
"""Test if the model can run with mobile parameters.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
backbone = movinet.Movinet( | |
model_id='a0', | |
causal=True, | |
use_external_states=True, | |
conv_type='2plus1d', | |
se_type='2plus3d', | |
activation='hard_swish', | |
gating_activation='hard_sigmoid' | |
) | |
model = movinet_model.MovinetClassifier( | |
backbone, num_classes=600, output_states=True) | |
inputs = tf.ones([1, 8, 172, 172, 3]) | |
init_states = model.init_states(tf.shape(inputs)) | |
expected, _ = model({**init_states, 'image': inputs}) | |
frames = tf.split(inputs, inputs.shape[1], axis=1) | |
states = init_states | |
for frame in frames: | |
output, states = model({**states, 'image': frame}) | |
predicted = output | |
self.assertEqual(predicted.shape, expected.shape) | |
self.assertAllClose(predicted, expected, 1e-5, 1e-5) | |
def test_serialize_deserialize(self): | |
"""Validate the classification network can be serialized and deserialized.""" | |
backbone = movinet.Movinet(model_id='a0') | |
model = movinet_model.MovinetClassifier(backbone=backbone, num_classes=1000) | |
config = model.get_config() | |
new_model = movinet_model.MovinetClassifier.from_config(config) | |
# Validate that the config can be forced to JSON. | |
new_model.to_json() | |
# If the serialization was successful, the new config should match the old. | |
self.assertAllEqual(model.get_config(), new_model.get_config()) | |
def test_saved_model_save_load(self): | |
backbone = movinet.Movinet('a0') | |
model = movinet_model.MovinetClassifier( | |
backbone, num_classes=600) | |
model.build([1, 5, 172, 172, 3]) | |
model.compile(metrics=['acc']) | |
tf_keras.models.save_model(model, '/tmp/movinet/') | |
loaded_model = tf_keras.models.load_model('/tmp/movinet/') | |
output = loaded_model(dict(image=tf.ones([1, 1, 1, 1, 3]))) | |
self.assertAllEqual(output.shape, [1, 600]) | |
def test_movinet_models(self, model_id, expected_params_millions): | |
"""Test creation of MoViNet family models with states.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
model = movinet_model.MovinetClassifier( | |
backbone=movinet.Movinet( | |
model_id=model_id, | |
causal=True), | |
num_classes=600) | |
model.build([1, 1, 1, 1, 3]) | |
num_params_millions = model.count_params() / 1e6 | |
self.assertEqual(num_params_millions, expected_params_millions) | |
def test_movinet_a0_2plus1d(self): | |
"""Test creation of MoViNet with 2plus1d configuration.""" | |
tf_keras.backend.set_image_data_format('channels_last') | |
model_2plus1d = movinet_model.MovinetClassifier( | |
backbone=movinet.Movinet( | |
model_id='a0', | |
conv_type='2plus1d'), | |
num_classes=600) | |
model_2plus1d.build([1, 1, 1, 1, 3]) | |
model_3d_2plus1d = movinet_model.MovinetClassifier( | |
backbone=movinet.Movinet( | |
model_id='a0', | |
conv_type='3d_2plus1d'), | |
num_classes=600) | |
model_3d_2plus1d.build([1, 1, 1, 1, 3]) | |
# Ensure both models have the same weights | |
weights = [] | |
for var_2plus1d, var_3d_2plus1d in zip( | |
model_2plus1d.get_weights(), model_3d_2plus1d.get_weights()): | |
if var_2plus1d.shape == var_3d_2plus1d.shape: | |
weights.append(var_3d_2plus1d) | |
else: | |
if var_3d_2plus1d.shape[0] == 1: | |
weight = var_3d_2plus1d[0] | |
else: | |
weight = var_3d_2plus1d[:, 0] | |
if weight.shape[-1] != var_2plus1d.shape[-1]: | |
# Transpose any depthwise kernels (conv3d --> depthwise_conv2d) | |
weight = tf.transpose(weight, perm=(0, 1, 3, 2)) | |
weights.append(weight) | |
model_2plus1d.set_weights(weights) | |
inputs = tf.ones([2, 8, 172, 172, 3], dtype=tf.float32) | |
logits_2plus1d = model_2plus1d(inputs) | |
logits_3d_2plus1d = model_3d_2plus1d(inputs) | |
# Ensure both models have the same output, since the weights are the same | |
self.assertAllEqual(logits_2plus1d.shape, logits_3d_2plus1d.shape) | |
self.assertAllClose(logits_2plus1d, logits_3d_2plus1d, 1e-5, 1e-5) | |
if __name__ == '__main__': | |
tf.test.main() | |