Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for train.py.""" | |
import json | |
import os | |
import random | |
from absl import flags | |
from absl import logging | |
from absl.testing import flagsaver | |
import tensorflow as tf, tf_keras | |
from official.projects.movinet import train as train_lib | |
from official.vision.dataloaders import tfexample_utils | |
FLAGS = flags.FLAGS | |
class TrainTest(tf.test.TestCase): | |
def setUp(self): | |
super(TrainTest, self).setUp() | |
self._model_dir = os.path.join(self.get_temp_dir(), 'model_dir') | |
tf.io.gfile.makedirs(self._model_dir) | |
data_dir = os.path.join(self.get_temp_dir(), 'data') | |
tf.io.gfile.makedirs(data_dir) | |
self._data_path = os.path.join(data_dir, 'data.tfrecord') | |
# pylint: disable=g-complex-comprehension | |
examples = [ | |
tfexample_utils.make_video_test_example( | |
image_shape=(32, 32, 3), | |
audio_shape=(20, 128), | |
label=random.randint(0, 100)) for _ in range(2) | |
] | |
# pylint: enable=g-complex-comprehension | |
tfexample_utils.dump_to_tfrecord(self._data_path, tf_examples=examples) | |
def test_train_and_evaluation_pipeline_runs(self): | |
saved_flag_values = flagsaver.save_flag_values() | |
train_lib.tfm_flags.define_flags() | |
FLAGS.mode = 'train' | |
FLAGS.model_dir = self._model_dir | |
FLAGS.experiment = 'movinet_kinetics600' | |
logging.info('Test pipeline correctness.') | |
num_frames = 4 | |
# Test model training pipeline runs. | |
params_override = json.dumps({ | |
'runtime': { | |
'distribution_strategy': 'mirrored', | |
'mixed_precision_dtype': 'float32', | |
}, | |
'trainer': { | |
'train_steps': 2, | |
'validation_steps': 2, | |
}, | |
'task': { | |
'train_data': { | |
'input_path': self._data_path, | |
'file_type': 'tfrecord', | |
'feature_shape': [num_frames, 32, 32, 3], | |
'global_batch_size': 2, | |
}, | |
'validation_data': { | |
'input_path': self._data_path, | |
'file_type': 'tfrecord', | |
'global_batch_size': 2, | |
'feature_shape': [num_frames * 2, 32, 32, 3], | |
} | |
} | |
}) | |
FLAGS.params_override = params_override | |
train_lib.main('unused_args') | |
# Test model evaluation pipeline runs on newly produced checkpoint. | |
FLAGS.mode = 'eval' | |
with train_lib.gin.unlock_config(): | |
train_lib.main('unused_args') | |
flagsaver.restore_flag_values(saved_flag_values) | |
if __name__ == '__main__': | |
tf.test.main() | |