Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Miscellaneous functions that can be called by models.""" | |
import numbers | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.util import nest | |
# pylint:disable=logging-format-interpolation | |
def past_stop_threshold(stop_threshold, eval_metric): | |
"""Return a boolean representing whether a model should be stopped. | |
Args: | |
stop_threshold: float, the threshold above which a model should stop | |
training. | |
eval_metric: float, the current value of the relevant metric to check. | |
Returns: | |
True if training should stop, False otherwise. | |
Raises: | |
ValueError: if either stop_threshold or eval_metric is not a number | |
""" | |
if stop_threshold is None: | |
return False | |
if not isinstance(stop_threshold, numbers.Number): | |
raise ValueError("Threshold for checking stop conditions must be a number.") | |
if not isinstance(eval_metric, numbers.Number): | |
raise ValueError("Eval metric being checked against stop conditions " | |
"must be a number.") | |
if eval_metric >= stop_threshold: | |
logging.info("Stop threshold of {} was passed with metric value {}.".format( | |
stop_threshold, eval_metric)) | |
return True | |
return False | |
def generate_synthetic_data(input_shape, | |
input_value=0, | |
input_dtype=None, | |
label_shape=None, | |
label_value=0, | |
label_dtype=None): | |
"""Create a repeating dataset with constant values. | |
Args: | |
input_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of | |
the input data. | |
input_value: Value of each input element. | |
input_dtype: Input dtype. If None, will be inferred by the input value. | |
label_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of | |
the label data. | |
label_value: Value of each input element. | |
label_dtype: Input dtype. If None, will be inferred by the target value. | |
Returns: | |
Dataset of tensors or tuples of tensors (if label_shape is set). | |
""" | |
# TODO(kathywu): Replace with SyntheticDataset once it is in contrib. | |
element = input_element = nest.map_structure( | |
lambda s: tf.constant(input_value, input_dtype, s), input_shape) | |
if label_shape: | |
label_element = nest.map_structure( | |
lambda s: tf.constant(label_value, label_dtype, s), label_shape) | |
element = (input_element, label_element) | |
return tf.data.Dataset.from_tensors(element).repeat() | |
def apply_clean(flags_obj): | |
if flags_obj.clean and tf.io.gfile.exists(flags_obj.model_dir): | |
logging.info("--clean flag set. Removing existing model dir:" | |
" {}".format(flags_obj.model_dir)) | |
tf.io.gfile.rmtree(flags_obj.model_dir) | |