Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tensorflow as tf, tf_keras | |
from official.legacy.bert import bert_models | |
from official.legacy.bert import configs as bert_configs | |
from official.nlp.modeling import networks | |
class BertModelsTest(tf.test.TestCase): | |
def setUp(self): | |
super(BertModelsTest, self).setUp() | |
self._bert_test_config = bert_configs.BertConfig( | |
attention_probs_dropout_prob=0.0, | |
hidden_act='gelu', | |
hidden_dropout_prob=0.0, | |
hidden_size=16, | |
initializer_range=0.02, | |
intermediate_size=32, | |
max_position_embeddings=128, | |
num_attention_heads=2, | |
num_hidden_layers=2, | |
type_vocab_size=2, | |
vocab_size=30522) | |
def test_pretrain_model(self): | |
model, encoder = bert_models.pretrain_model( | |
self._bert_test_config, | |
seq_length=5, | |
max_predictions_per_seq=2, | |
initializer=None, | |
use_next_sentence_label=True) | |
self.assertIsInstance(model, tf_keras.Model) | |
self.assertIsInstance(encoder, networks.BertEncoder) | |
# model has one scalar output: loss value. | |
self.assertEqual(model.output.shape.as_list(), [ | |
None, | |
]) | |
# Expect two output from encoder: sequence and classification output. | |
self.assertIsInstance(encoder.output, list) | |
self.assertLen(encoder.output, 2) | |
# shape should be [batch size, hidden_size] | |
self.assertEqual(encoder.output[1].shape.as_list(), [None, 16]) | |
def test_squad_model(self): | |
model, core_model = bert_models.squad_model( | |
self._bert_test_config, | |
max_seq_length=5, | |
initializer=None, | |
hub_module_url=None, | |
hub_module_trainable=None) | |
self.assertIsInstance(model, tf_keras.Model) | |
self.assertIsInstance(core_model, tf_keras.Model) | |
# Expect two output from model: start positions and end positions | |
self.assertIsInstance(model.output, list) | |
self.assertLen(model.output, 2) | |
# Expect two output from core_model: sequence and classification output. | |
self.assertIsInstance(core_model.output, list) | |
self.assertLen(core_model.output, 2) | |
# shape should be [batch size, None, hidden_size] | |
self.assertEqual(core_model.output[0].shape.as_list(), [None, None, 16]) | |
# shape should be [batch size, hidden_size] | |
self.assertEqual(core_model.output[1].shape.as_list(), [None, 16]) | |
def test_classifier_model(self): | |
model, core_model = bert_models.classifier_model( | |
self._bert_test_config, | |
num_labels=3, | |
max_seq_length=5, | |
final_layer_initializer=None, | |
hub_module_url=None, | |
hub_module_trainable=None) | |
self.assertIsInstance(model, tf_keras.Model) | |
self.assertIsInstance(core_model, tf_keras.Model) | |
# model has one classification output with num_labels=3. | |
self.assertEqual(model.output.shape.as_list(), [None, 3]) | |
# Expect two output from core_model: sequence and classification output. | |
self.assertIsInstance(core_model.output, list) | |
self.assertLen(core_model.output, 2) | |
# shape should be [batch size, None, hidden_size] | |
self.assertEqual(core_model.output[0].shape.as_list(), [None, None, 16]) | |
# shape should be [batch size, hidden_size] | |
self.assertEqual(core_model.output[1].shape.as_list(), [None, 16]) | |
if __name__ == '__main__': | |
tf.test.main() | |