deanna-emery's picture
updates
93528c6
raw
history blame
7.87 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for movinet.py."""
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.projects.movinet.modeling import movinet
class MoViNetTest(parameterized.TestCase, tf.test.TestCase):
def test_network_creation(self):
"""Test creation of MoViNet family models."""
tf_keras.backend.set_image_data_format('channels_last')
network = movinet.Movinet(
model_id='a0',
causal=True,
)
inputs = tf_keras.Input(shape=(8, 128, 128, 3), batch_size=1)
endpoints, states = network(inputs)
self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])
self.assertNotEmpty(states)
def test_network_with_states(self):
"""Test creation of MoViNet family models with states."""
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
use_external_states=True,
)
inputs = tf.ones([1, 8, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
endpoints, new_states = backbone({**init_states, 'image': inputs})
self.assertAllEqual(endpoints['stem'].shape, [1, 8, 64, 64, 8])
self.assertAllEqual(endpoints['block0_layer0'].shape, [1, 8, 32, 32, 8])
self.assertAllEqual(endpoints['block1_layer0'].shape, [1, 8, 16, 16, 32])
self.assertAllEqual(endpoints['block2_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block3_layer0'].shape, [1, 8, 8, 8, 56])
self.assertAllEqual(endpoints['block4_layer0'].shape, [1, 8, 4, 4, 104])
self.assertAllEqual(endpoints['head'].shape, [1, 1, 1, 1, 480])
self.assertNotEmpty(init_states)
self.assertNotEmpty(new_states)
def test_movinet_stream(self):
"""Test if the backbone can be run in streaming mode."""
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
use_external_states=True,
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
def test_movinet_stream_nse(self):
"""Test if the backbone can be run in streaming mode w/o SE layer."""
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
use_external_states=True,
se_type='none',
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
# Check contents in the states dictionary.
state_keys = list(init_states.keys())
self.assertIn('state_head_pool_buffer', state_keys)
self.assertIn('state_head_pool_frame_count', state_keys)
state_keys.remove('state_head_pool_buffer')
state_keys.remove('state_head_pool_frame_count')
# From now on, there are only 'stream_buffer' for the convolutions.
for state_key in state_keys:
self.assertIn(
'stream_buffer', state_key,
msg=f'Expecting stream_buffer only, found {state_key}')
def test_movinet_2plus1d_stream(self):
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
conv_type='2plus1d',
use_external_states=True,
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
def test_movinet_3d_2plus1d_stream(self):
tf_keras.backend.set_image_data_format('channels_last')
backbone = movinet.Movinet(
model_id='a0',
causal=True,
conv_type='3d_2plus1d',
use_external_states=True,
)
inputs = tf.ones([1, 5, 128, 128, 3])
init_states = backbone.init_states(tf.shape(inputs))
expected_endpoints, _ = backbone({**init_states, 'image': inputs})
frames = tf.split(inputs, inputs.shape[1], axis=1)
states = init_states
for frame in frames:
output, states = backbone({**states, 'image': frame})
predicted_endpoints = output
predicted = predicted_endpoints['head']
# The expected final output is simply the mean across frames
expected = expected_endpoints['head']
expected = tf.reduce_mean(expected, 1, keepdims=True)
self.assertEqual(predicted.shape, expected.shape)
self.assertAllClose(predicted, expected, 1e-5, 1e-5)
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
model_id='a0',
causal=True,
use_positional_encoding=True,
use_external_states=True,
)
network = movinet.Movinet(**kwargs)
# Create another network object from the first object's config.
new_network = movinet.Movinet.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()