Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for iou metric.""" | |
import tensorflow as tf, tf_keras | |
from official.vision.evaluation import iou | |
class IoUTest(tf.test.TestCase): | |
def test_config(self): | |
m_obj = iou.PerClassIoU(num_classes=2, name='per_class_iou') | |
self.assertEqual(m_obj.name, 'per_class_iou') | |
self.assertEqual(m_obj.num_classes, 2) | |
m_obj2 = iou.PerClassIoU.from_config(m_obj.get_config()) | |
self.assertEqual(m_obj2.name, 'per_class_iou') | |
self.assertEqual(m_obj2.num_classes, 2) | |
def test_unweighted(self): | |
y_pred = [0, 1, 0, 1] | |
y_true = [0, 0, 1, 1] | |
m_obj = iou.PerClassIoU(num_classes=2) | |
result = m_obj(y_true, y_pred) | |
# cm = [[1, 1], | |
# [1, 1]] | |
# sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] | |
# iou = true_positives / (sum_row + sum_col - true_positives)) | |
expected_result = [1 / (2 + 2 - 1), 1 / (2 + 2 - 1)] | |
self.assertAllClose(expected_result, result, atol=1e-3) | |
def test_weighted(self): | |
y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) | |
y_true = tf.constant([0, 0, 1, 1]) | |
sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) | |
m_obj = iou.PerClassIoU(num_classes=2) | |
result = m_obj(y_true, y_pred, sample_weight=sample_weight) | |
# cm = [[0.2, 0.3], | |
# [0.4, 0.1]] | |
# sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] | |
# iou = true_positives / (sum_row + sum_col - true_positives)) | |
expected_result = [0.2 / (0.6 + 0.5 - 0.2), 0.1 / (0.4 + 0.5 - 0.1)] | |
self.assertAllClose(expected_result, result, atol=1e-3) | |
def test_multi_dim_input(self): | |
y_pred = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) | |
y_true = tf.constant([[0, 0], [1, 1]]) | |
sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) | |
m_obj = iou.PerClassIoU(num_classes=2) | |
result = m_obj(y_true, y_pred, sample_weight=sample_weight) | |
# cm = [[0.2, 0.3], | |
# [0.4, 0.1]] | |
# sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] | |
# iou = true_positives / (sum_row + sum_col - true_positives)) | |
expected_result = [0.2 / (0.6 + 0.5 - 0.2), 0.1 / (0.4 + 0.5 - 0.1)] | |
self.assertAllClose(expected_result, result, atol=1e-3) | |
def test_zero_valid_entries(self): | |
m_obj = iou.PerClassIoU(num_classes=2) | |
self.assertAllClose(m_obj.result(), [0, 0], atol=1e-3) | |
def test_zero_and_non_zero_entries(self): | |
y_pred = tf.constant([1], dtype=tf.float32) | |
y_true = tf.constant([1]) | |
m_obj = iou.PerClassIoU(num_classes=2) | |
result = m_obj(y_true, y_pred) | |
# cm = [[0, 0], | |
# [0, 1]] | |
# sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] | |
# iou = true_positives / (sum_row + sum_col - true_positives)) | |
expected_result = [0, 1 / (1 + 1 - 1)] | |
self.assertAllClose(expected_result, result, atol=1e-3) | |
def test_update_state_and_result(self): | |
y_pred = [0, 1, 0, 1] | |
y_true = [0, 0, 1, 1] | |
m_obj = iou.PerClassIoU(num_classes=2) | |
m_obj.update_state(y_true, y_pred) | |
result = m_obj.result() | |
# cm = [[1, 1], | |
# [1, 1]] | |
# sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] | |
# iou = true_positives / (sum_row + sum_col - true_positives)) | |
expected_result = [1 / (2 + 2 - 1), 1 / (2 + 2 - 1)] | |
self.assertAllClose(expected_result, result, atol=1e-3) | |
def test_per_class_iou_v2(self): | |
metrics = iou.PerClassIoUV2(num_classes=3) | |
y_true = tf.constant([[ | |
[ | |
[0, 0, 1], | |
[0, 1, 1], | |
], | |
[ | |
[0, 1, 0], | |
[0, 0, 1], | |
], | |
]]) | |
y_pred = tf.constant([[ | |
[ | |
[1, 0, 0], | |
[1, 1, 1], | |
], | |
[ | |
[1, 1, 1], | |
[1, 0, 1], | |
], | |
]]) | |
metrics.update_state(y_true, y_pred) | |
self.assertAllClose([0.0, 1.0, 0.5], metrics.result(), atol=1e-3) | |
def test_per_class_iou_v2_sparse_input(self): | |
metrics = iou.PerClassIoUV2( | |
num_classes=3, sparse_y_true=True, sparse_y_pred=True) | |
y_true = [[ | |
[1, 2, 1], | |
[2, 2, 1], | |
]] | |
y_pred = [[ | |
[2, 0, 1], | |
[2, 0, 1], | |
]] | |
metrics.update_state(y_true, y_pred) | |
self.assertAllClose([0., 2. / 3., 1. / 4.], metrics.result(), atol=1e-3) | |
def test_per_class_iou_v2_keep_tailing_dims(self): | |
num_classes = 3 | |
num_channels = 2 | |
metrics = iou.PerClassIoUV2( | |
num_classes=num_classes, | |
shape=(num_classes, num_channels), | |
sparse_y_true=True, | |
sparse_y_pred=True, | |
axis=0) | |
y_pred = tf.constant([2, 1]) | |
y_true = tf.constant([2, 0]) | |
metrics.update_state(y_true, y_pred) | |
self.assertAllClose([[0., 0.], [0., 0.], [1., 0.]], | |
metrics.result(), | |
atol=1e-3) | |
if __name__ == '__main__': | |
tf.test.main() | |