ASL-MoViNet-T5-translator / official /vision /evaluation /panoptic_quality_evaluator_test.py
deanna-emery's picture
updates
93528c6
raw
history blame
3.33 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for panoptic_quality_evaluator."""
import numpy as np
import tensorflow as tf, tf_keras
from official.vision.evaluation import panoptic_quality_evaluator
class PanopticQualityEvaluatorTest(tf.test.TestCase):
def test_multiple_batches(self):
category_mask = np.zeros([6, 6], np.uint16)
groundtruth_instance_mask = np.array([
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 2, 2, 2, 1],
[1, 2, 2, 2, 2, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
],
dtype=np.uint16)
good_det_instance_mask = np.array([
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 2, 2, 2, 2, 1],
[1, 2, 2, 2, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
],
dtype=np.uint16)
groundtruths = {
'category_mask':
tf.convert_to_tensor([category_mask]),
'instance_mask':
tf.convert_to_tensor([groundtruth_instance_mask]),
'image_info':
tf.convert_to_tensor([[[6, 6], [6, 6], [1.0, 1.0], [0, 0]]],
dtype=tf.float32)
}
predictions = {
'category_mask': tf.convert_to_tensor([category_mask]),
'instance_mask': tf.convert_to_tensor([good_det_instance_mask])
}
pq_evaluator = panoptic_quality_evaluator.PanopticQualityEvaluator(
num_categories=1,
ignored_label=2,
max_instances_per_category=16,
offset=16,
rescale_predictions=True)
for _ in range(2):
pq_evaluator.update_state(groundtruths, predictions)
bad_det_instance_mask = np.array([
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1],
[1, 1, 1, 2, 2, 1],
[1, 1, 1, 2, 2, 1],
[1, 1, 1, 2, 2, 1],
[1, 1, 1, 1, 1, 1],
],
dtype=np.uint16)
predictions['instance_mask'] = tf.convert_to_tensor([bad_det_instance_mask])
for _ in range(2):
pq_evaluator.update_state(groundtruths, predictions)
results = pq_evaluator.result()
np.testing.assert_array_equal(results['pq_per_class'],
[((28 / 30 + 6 / 8) + (27 / 32)) / 2 / 2])
np.testing.assert_array_equal(results['rq_per_class'], [3 / 4])
np.testing.assert_array_equal(results['sq_per_class'],
[((28 / 30 + 6 / 8) + (27 / 32)) / 3])
self.assertAlmostEqual(results['All_pq'], 0.63177083)
self.assertAlmostEqual(results['All_rq'], 0.75)
self.assertAlmostEqual(results['All_sq'], 0.84236111)
self.assertEqual(results['All_num_categories'], 1)
if __name__ == '__main__':
tf.test.main()