Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Data parser and processing for RetinaNet. | |
Parse image and ground-truths in a dataset to training targets and package them | |
into (image, labels) tuple for RetinaNet. | |
""" | |
from typing import Optional | |
# Import libraries | |
from absl import logging | |
import tensorflow as tf, tf_keras | |
from official.vision.dataloaders import parser | |
from official.vision.dataloaders import utils | |
from official.vision.ops import anchor | |
from official.vision.ops import augment | |
from official.vision.ops import box_ops | |
from official.vision.ops import preprocess_ops | |
class Parser(parser.Parser): | |
"""Parser to parse an image and its annotations into a dictionary of tensors.""" | |
def __init__(self, | |
output_size, | |
min_level, | |
max_level, | |
num_scales, | |
aspect_ratios, | |
anchor_size, | |
match_threshold=0.5, | |
unmatched_threshold=0.5, | |
box_coder_weights=None, | |
aug_type=None, | |
aug_rand_hflip=False, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
use_autoaugment=False, | |
autoaugment_policy_name='v0', | |
skip_crowd_during_training=True, | |
max_num_instances=100, | |
dtype='bfloat16', | |
resize_first: Optional[bool] = None, | |
mode=None, | |
pad=True, | |
keep_aspect_ratio=True): | |
"""Initializes parameters for parsing annotations in the dataset. | |
Args: | |
output_size: `Tensor` or `list` for [height, width] of output image. The | |
output_size should be divided by the largest feature stride 2^max_level. | |
min_level: `int` number of minimum level of the output feature pyramid. | |
max_level: `int` number of maximum level of the output feature pyramid. | |
num_scales: `int` number representing intermediate scales added on each | |
level. For instances, num_scales=2 adds one additional intermediate | |
anchor scales [2^0, 2^0.5] on each level. | |
aspect_ratios: `list` of float numbers representing the aspect ratio | |
anchors added on each level. The number indicates the ratio of width to | |
height. For instances, aspect_ratios=[1.0, 2.0, 0.5] adds three anchors | |
on each scale level. | |
anchor_size: `float` number representing the scale of size of the base | |
anchor to the feature stride 2^level. | |
match_threshold: `float` number between 0 and 1 representing the | |
lower-bound threshold to assign positive labels for anchors. An anchor | |
with a score over the threshold is labeled positive. | |
unmatched_threshold: `float` number between 0 and 1 representing the | |
upper-bound threshold to assign negative labels for anchors. An anchor | |
with a score below the threshold is labeled negative. | |
box_coder_weights: Optional `list` of 4 positive floats to scale y, x, h, | |
and w when encoding box coordinates. If set to None, does not perform | |
scaling. For Faster RCNN, the open-source implementation recommends | |
using [10.0, 10.0, 5.0, 5.0]. | |
aug_type: An optional Augmentation object to choose from AutoAugment and | |
RandAugment. | |
aug_rand_hflip: `bool`, if True, augment training with random horizontal | |
flip. | |
aug_scale_min: `float`, the minimum scale applied to `output_size` for | |
data augmentation during training. | |
aug_scale_max: `float`, the maximum scale applied to `output_size` for | |
data augmentation during training. | |
use_autoaugment: `bool`, if True, use the AutoAugment augmentation policy | |
during training. | |
autoaugment_policy_name: `string` that specifies the name of the | |
AutoAugment policy that will be used during training. | |
skip_crowd_during_training: `bool`, if True, skip annotations labeled with | |
`is_crowd` equals to 1. | |
max_num_instances: `int` number of maximum number of instances in an | |
image. The groundtruth data will be padded to `max_num_instances`. | |
dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}. | |
resize_first: Optional `bool`, if True, resize the image before the | |
augmentations; computationally more efficient. | |
mode: a ModeKeys. Specifies if this is training, evaluation, prediction or | |
prediction with ground-truths in the outputs. | |
pad: A bool indicating whether to pad the input image to make it | |
size a factor of 2**max_level. The padded size will be the smallest | |
rectangle, such that each dimension is the smallest multiple of | |
2**max_level which is larger than the desired output size. For example, | |
if desired output size = (320, 320) and max_level = 7, the output padded | |
size = (384, 384). This is necessary when using FPN as it assumes each | |
lower feature map is 2x size of its higher neighbor. Without padding, | |
such relationship may be invalidated. The backbone may produce 5x5 and | |
2x2 consecutive feature maps, which does not work with FPN. | |
keep_aspect_ratio: `bool`, if True, keep the aspect ratio when resizing. | |
""" | |
self._mode = mode | |
self._max_num_instances = max_num_instances | |
self._skip_crowd_during_training = skip_crowd_during_training | |
# Anchor. | |
self._output_size = output_size | |
self._min_level = min_level | |
self._max_level = max_level | |
self._num_scales = num_scales | |
self._aspect_ratios = aspect_ratios | |
self._anchor_size = anchor_size | |
self._match_threshold = match_threshold | |
self._unmatched_threshold = unmatched_threshold | |
self._box_coder_weights = box_coder_weights | |
# Data augmentation. | |
self._aug_rand_hflip = aug_rand_hflip | |
self._aug_scale_min = aug_scale_min | |
self._aug_scale_max = aug_scale_max | |
# Data augmentation with AutoAugment or RandAugment. | |
self._augmenter = None | |
if aug_type is not None: | |
if aug_type.type == 'autoaug': | |
logging.info('Using AutoAugment.') | |
self._augmenter = augment.AutoAugment( | |
augmentation_name=aug_type.autoaug.augmentation_name, | |
cutout_const=aug_type.autoaug.cutout_const, | |
translate_const=aug_type.autoaug.translate_const) | |
elif aug_type.type == 'randaug': | |
logging.info('Using RandAugment.') | |
self._augmenter = augment.RandAugment.build_for_detection( | |
num_layers=aug_type.randaug.num_layers, | |
magnitude=aug_type.randaug.magnitude, | |
cutout_const=aug_type.randaug.cutout_const, | |
translate_const=aug_type.randaug.translate_const, | |
prob_to_apply=aug_type.randaug.prob_to_apply, | |
exclude_ops=aug_type.randaug.exclude_ops) | |
else: | |
raise ValueError(f'Augmentation policy {aug_type.type} not supported.') | |
# Deprecated. Data Augmentation with AutoAugment. | |
self._use_autoaugment = use_autoaugment | |
self._autoaugment_policy_name = autoaugment_policy_name | |
# Data type. | |
self._dtype = dtype | |
# Input pipeline optimization. | |
self._resize_first = resize_first | |
# Whether to pad image to make its size the smallest factor of 2*max_level. | |
# This is needed when using FPN decoder. | |
self._pad = pad | |
self._keep_aspect_ratio = keep_aspect_ratio | |
def _resize_and_crop_image_and_boxes(self, image, boxes, pad=True): | |
"""Resizes and crops image and boxes, optionally with padding.""" | |
# Resizes and crops image. | |
padded_size = None | |
if pad: | |
padded_size = preprocess_ops.compute_padded_size(self._output_size, | |
2**self._max_level) | |
image, image_info = preprocess_ops.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=padded_size, | |
aug_scale_min=self._aug_scale_min, | |
aug_scale_max=self._aug_scale_max, | |
keep_aspect_ratio=self._keep_aspect_ratio, | |
) | |
# Resizes and crops boxes. | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale, | |
image_info[1, :], offset) | |
return image, boxes, image_info | |
def _parse_train_data(self, data, anchor_labeler=None, input_anchor=None): | |
"""Parses data for training and evaluation.""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
# If not empty, `attributes` is a dict of (name, ground_truth) pairs. | |
# `ground_truth` of attributes is assumed in shape [N, attribute_size]. | |
attributes = data.get('groundtruth_attributes', {}) | |
is_crowds = data['groundtruth_is_crowd'] | |
# Skips annotations with `is_crowd` = True. | |
if self._skip_crowd_during_training: | |
num_groundtruths = tf.shape(input=classes)[0] | |
with tf.control_dependencies([num_groundtruths, is_crowds]): | |
indices = tf.cond( | |
pred=tf.greater(tf.size(input=is_crowds), 0), | |
true_fn=lambda: tf.where(tf.logical_not(is_crowds))[:, 0], | |
false_fn=lambda: tf.cast(tf.range(num_groundtruths), tf.int64)) | |
classes = tf.gather(classes, indices) | |
boxes = tf.gather(boxes, indices) | |
for k, v in attributes.items(): | |
attributes[k] = tf.gather(v, indices) | |
# Gets original image. | |
image = data['image'] | |
image_size = tf.cast(tf.shape(image)[0:2], tf.float32) | |
less_output_pixels = ( | |
self._output_size[0] * self._output_size[1] | |
) < image_size[0] * image_size[1] | |
# Resizing first can reduce augmentation computation if the original image | |
# has more pixels than the desired output image. | |
# There might be a smarter threshold to compute less_output_pixels as | |
# we keep the padding to the very end, i.e., a resized image likely has less | |
# pixels than self._output_size[0] * self._output_size[1]. | |
resize_first = self._resize_first and less_output_pixels | |
if resize_first: | |
image, boxes, image_info = self._resize_and_crop_image_and_boxes( | |
image, boxes, pad=False | |
) | |
image = tf.cast(image, dtype=tf.uint8) | |
# Apply autoaug or randaug. | |
if self._augmenter is not None: | |
image, boxes = self._augmenter.distort_with_boxes(image, boxes) | |
image_shape = tf.shape(input=image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = preprocess_ops.normalize_image(image) | |
# Flips image randomly during training. | |
if self._aug_rand_hflip: | |
image, boxes, _ = preprocess_ops.random_horizontal_flip(image, boxes) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_ops.denormalize_boxes(boxes, image_shape) | |
if self._pad: | |
padded_size = preprocess_ops.compute_padded_size( | |
self._output_size, 2**self._max_level | |
) | |
else: | |
padded_size = self._output_size | |
if not resize_first: | |
image, boxes, image_info = ( | |
self._resize_and_crop_image_and_boxes(image, boxes, pad=self._pad) | |
) | |
image = tf.image.pad_to_bounding_box( | |
image, 0, 0, padded_size[0], padded_size[1] | |
) | |
image = tf.ensure_shape(image, padded_size + [3]) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# Filters out ground-truth boxes that are all zeros. | |
indices = box_ops.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
for k, v in attributes.items(): | |
attributes[k] = tf.gather(v, indices) | |
# Assigns anchors. | |
if input_anchor is None: | |
input_anchor = anchor.build_anchor_generator( | |
min_level=self._min_level, | |
max_level=self._max_level, | |
num_scales=self._num_scales, | |
aspect_ratios=self._aspect_ratios, | |
anchor_size=self._anchor_size, | |
) | |
anchor_boxes = input_anchor(image_size=(image_height, image_width)) | |
if anchor_labeler is None: | |
anchor_labeler = anchor.AnchorLabeler( | |
match_threshold=self._match_threshold, | |
unmatched_threshold=self._unmatched_threshold, | |
box_coder_weights=self._box_coder_weights, | |
) | |
(cls_targets, box_targets, att_targets, cls_weights, | |
box_weights) = anchor_labeler.label_anchors( | |
anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes) | |
# Casts input image to desired data type. | |
image = tf.cast(image, dtype=self._dtype) | |
# Packs labels for model_fn outputs. | |
labels = { | |
'cls_targets': cls_targets, | |
'box_targets': box_targets, | |
'anchor_boxes': anchor_boxes, | |
'cls_weights': cls_weights, | |
'box_weights': box_weights, | |
'image_info': image_info, | |
} | |
if att_targets: | |
labels['attribute_targets'] = att_targets | |
return image, labels | |
def _parse_eval_data(self, data, anchor_labeler=None, input_anchor=None): | |
"""Parses data for training and evaluation.""" | |
classes = data['groundtruth_classes'] | |
boxes = data['groundtruth_boxes'] | |
# If not empty, `attributes` is a dict of (name, ground_truth) pairs. | |
# `ground_truth` of attributes is assumed in shape [N, attribute_size]. | |
attributes = data.get('groundtruth_attributes', {}) | |
# Gets original image and its size. | |
image = data['image'] | |
image_shape = tf.shape(input=image)[0:2] | |
# Normalizes image with mean and std pixel values. | |
image = preprocess_ops.normalize_image(image) | |
# Converts boxes from normalized coordinates to pixel coordinates. | |
boxes = box_ops.denormalize_boxes(boxes, image_shape) | |
# Resizes and crops image. | |
if self._pad: | |
padded_size = preprocess_ops.compute_padded_size( | |
self._output_size, 2**self._max_level | |
) | |
else: | |
padded_size = self._output_size | |
image, image_info = preprocess_ops.resize_and_crop_image( | |
image, | |
self._output_size, | |
padded_size=padded_size, | |
aug_scale_min=1.0, | |
aug_scale_max=1.0, | |
keep_aspect_ratio=self._keep_aspect_ratio, | |
) | |
image = tf.ensure_shape(image, padded_size + [3]) | |
image_height, image_width, _ = image.get_shape().as_list() | |
# Resizes and crops boxes. | |
image_scale = image_info[2, :] | |
offset = image_info[3, :] | |
boxes = preprocess_ops.resize_and_crop_boxes(boxes, image_scale, | |
image_info[1, :], offset) | |
# Filters out ground-truth boxes that are all zeros. | |
indices = box_ops.get_non_empty_box_indices(boxes) | |
boxes = tf.gather(boxes, indices) | |
classes = tf.gather(classes, indices) | |
for k, v in attributes.items(): | |
attributes[k] = tf.gather(v, indices) | |
# Assigns anchors. | |
if input_anchor is None: | |
input_anchor = anchor.build_anchor_generator( | |
min_level=self._min_level, | |
max_level=self._max_level, | |
num_scales=self._num_scales, | |
aspect_ratios=self._aspect_ratios, | |
anchor_size=self._anchor_size, | |
) | |
anchor_boxes = input_anchor(image_size=(image_height, image_width)) | |
if anchor_labeler is None: | |
anchor_labeler = anchor.AnchorLabeler( | |
match_threshold=self._match_threshold, | |
unmatched_threshold=self._unmatched_threshold, | |
box_coder_weights=self._box_coder_weights, | |
) | |
(cls_targets, box_targets, att_targets, cls_weights, | |
box_weights) = anchor_labeler.label_anchors( | |
anchor_boxes, boxes, tf.expand_dims(classes, axis=1), attributes) | |
# Casts input image to desired data type. | |
image = tf.cast(image, dtype=self._dtype) | |
# Sets up ground-truth data for evaluation. | |
groundtruths = { | |
'source_id': data['source_id'], | |
'height': data['height'], | |
'width': data['width'], | |
'num_detections': tf.shape(data['groundtruth_classes']), | |
'image_info': image_info, | |
'boxes': box_ops.denormalize_boxes( | |
data['groundtruth_boxes'], image_shape), | |
'classes': data['groundtruth_classes'], | |
'areas': data['groundtruth_area'], | |
'is_crowds': tf.cast(data['groundtruth_is_crowd'], tf.int32), | |
} | |
if 'groundtruth_attributes' in data: | |
groundtruths['attributes'] = data['groundtruth_attributes'] | |
groundtruths['source_id'] = utils.process_source_id( | |
groundtruths['source_id']) | |
groundtruths = utils.pad_groundtruths_to_fixed_size( | |
groundtruths, self._max_num_instances) | |
# Packs labels for model_fn outputs. | |
labels = { | |
'cls_targets': cls_targets, | |
'box_targets': box_targets, | |
'anchor_boxes': anchor_boxes, | |
'cls_weights': cls_weights, | |
'box_weights': box_weights, | |
'image_info': image_info, | |
'groundtruths': groundtruths, | |
} | |
if att_targets: | |
labels['attribute_targets'] = att_targets | |
return image, labels | |