deanna-emery's picture
updates
93528c6
raw
history blame
2.57 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for dataloader utils functions."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.dataloaders import utils
class UtilsTest(tf.test.TestCase, parameterized.TestCase):
def test_process_empty_source_id(self):
source_id = tf.constant([], dtype=tf.int64)
source_id = tf.strings.as_string(source_id)
self.assertEqual(-1, utils.process_source_id(source_id=source_id))
@parameterized.parameters(
([128, 256], [128, 256]),
([128, 32, 16], [128, 32, 16]),
)
def test_process_source_id(self, source_id, expected_result):
source_id = tf.constant(source_id, dtype=tf.int64)
source_id = tf.strings.as_string(source_id)
self.assertSequenceAlmostEqual(expected_result,
utils.process_source_id(source_id=source_id))
@parameterized.parameters(
([[10, 20, 30, 40]], [[100]], [[0]], 10, None),
([[0.1, 0.2, 0.5, 0.6]], [[0.5]], [[1]], 2, [[1.0, 2.0]]),
)
def test_pad_groundtruths_to_fixed_size(self, boxes, area, classes, size,
attributes):
groundtruths = {}
groundtruths['boxes'] = tf.constant(boxes)
groundtruths['is_crowds'] = tf.constant([[0]])
groundtruths['areas'] = tf.constant(area)
groundtruths['classes'] = tf.constant(classes)
if attributes:
groundtruths['attributes'] = {'depth': tf.constant(attributes)}
actual_result = utils.pad_groundtruths_to_fixed_size(
groundtruths=groundtruths, size=size)
# Check that the first dimension is padded to the expected size.
for key in actual_result:
if key == 'attributes':
for _, v in actual_result[key].items():
pad_shape = v.shape[0]
self.assertEqual(size, pad_shape)
else:
pad_shape = actual_result[key].shape[0]
self.assertEqual(size, pad_shape)
if __name__ == '__main__':
tf.test.main()