Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import io | |
# Import libraries | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf, tf_keras | |
import tensorflow_datasets as tfds | |
from official.vision.configs import common | |
from official.vision.configs import video_classification as exp_cfg | |
from official.vision.dataloaders import video_input | |
AUDIO_KEY = 'features/audio' | |
def fake_seq_example(): | |
# Create fake data. | |
random_image = np.random.randint(0, 256, size=(263, 320, 3), dtype=np.uint8) | |
random_image = Image.fromarray(random_image) | |
label = 42 | |
with io.BytesIO() as buffer: | |
random_image.save(buffer, format='JPEG') | |
raw_image_bytes = buffer.getvalue() | |
seq_example = tf.train.SequenceExample() | |
seq_example.feature_lists.feature_list.get_or_create( | |
video_input.IMAGE_KEY).feature.add().bytes_list.value[:] = [ | |
raw_image_bytes | |
] | |
seq_example.feature_lists.feature_list.get_or_create( | |
video_input.IMAGE_KEY).feature.add().bytes_list.value[:] = [ | |
raw_image_bytes | |
] | |
seq_example.context.feature[video_input.LABEL_KEY].int64_list.value[:] = [ | |
label | |
] | |
random_audio = np.random.normal(size=(10, 256)).tolist() | |
for s in random_audio: | |
seq_example.feature_lists.feature_list.get_or_create( | |
AUDIO_KEY).feature.add().float_list.value[:] = s | |
return seq_example, label | |
class DecoderTest(tf.test.TestCase): | |
"""A tf.SequenceExample decoder for the video classification task.""" | |
def test_decoder(self): | |
decoder = video_input.Decoder() | |
seq_example, label = fake_seq_example() | |
serialized_example = seq_example.SerializeToString() | |
decoded_tensors = decoder.decode(tf.convert_to_tensor(serialized_example)) | |
results = tf.nest.map_structure(lambda x: x.numpy(), decoded_tensors) | |
self.assertCountEqual([video_input.IMAGE_KEY, video_input.LABEL_KEY], | |
results.keys()) | |
self.assertEqual(label, results[video_input.LABEL_KEY]) | |
def test_decode_audio(self): | |
decoder = video_input.Decoder() | |
decoder.add_feature(AUDIO_KEY, tf.io.VarLenFeature(dtype=tf.float32)) | |
seq_example, label = fake_seq_example() | |
serialized_example = seq_example.SerializeToString() | |
decoded_tensors = decoder.decode(tf.convert_to_tensor(serialized_example)) | |
results = tf.nest.map_structure(lambda x: x.numpy(), decoded_tensors) | |
self.assertCountEqual( | |
[video_input.IMAGE_KEY, video_input.LABEL_KEY, AUDIO_KEY], | |
results.keys()) | |
self.assertEqual(label, results[video_input.LABEL_KEY]) | |
self.assertEqual(results[AUDIO_KEY].shape, (10, 256)) | |
def test_tfds_decode(self): | |
with tfds.testing.mock_data(num_examples=1): | |
dataset = tfds.load('ucf101', split='train').take(1) | |
data = next(iter(dataset)) | |
decoder = video_input.VideoTfdsDecoder() | |
decoded_tensors = decoder.decode(data) | |
self.assertContainsSubset([video_input.LABEL_KEY, video_input.IMAGE_KEY], | |
decoded_tensors.keys()) | |
class VideoAndLabelParserTest(tf.test.TestCase): | |
def test_video_input(self): | |
params = exp_cfg.kinetics600(is_training=True) | |
params.feature_shape = (2, 224, 224, 3) | |
params.min_image_size = 224 | |
decoder = video_input.Decoder() | |
parser = video_input.Parser(params).parse_fn(params.is_training) | |
seq_example, label = fake_seq_example() | |
input_tensor = tf.constant(seq_example.SerializeToString()) | |
decoded_tensors = decoder.decode(input_tensor) | |
output_tensor = parser(decoded_tensors) | |
image_features, label = output_tensor | |
image = image_features['image'] | |
self.assertAllEqual(image.shape, (2, 224, 224, 3)) | |
self.assertAllEqual(label.shape, (600,)) | |
def test_video_audio_input(self): | |
params = exp_cfg.kinetics600(is_training=True) | |
params.feature_shape = (2, 224, 224, 3) | |
params.min_image_size = 224 | |
params.output_audio = True | |
params.audio_feature = AUDIO_KEY | |
params.audio_feature_shape = (15, 256) | |
decoder = video_input.Decoder() | |
decoder.add_feature(params.audio_feature, | |
tf.io.VarLenFeature(dtype=tf.float32)) | |
parser = video_input.Parser(params).parse_fn(params.is_training) | |
seq_example, label = fake_seq_example() | |
input_tensor = tf.constant(seq_example.SerializeToString()) | |
decoded_tensors = decoder.decode(input_tensor) | |
output_tensor = parser(decoded_tensors) | |
features, label = output_tensor | |
image = features['image'] | |
audio = features['audio'] | |
self.assertAllEqual(image.shape, (2, 224, 224, 3)) | |
self.assertAllEqual(label.shape, (600,)) | |
self.assertEqual(audio.shape, (15, 256)) | |
def test_video_input_random_stride(self): | |
params = exp_cfg.kinetics600(is_training=True) | |
params.feature_shape = (2, 224, 224, 3) | |
params.min_image_size = 224 | |
params.temporal_stride = 2 | |
params.random_stride_range = 1 | |
decoder = video_input.Decoder() | |
parser = video_input.Parser(params).parse_fn(params.is_training) | |
seq_example, label = fake_seq_example() | |
input_tensor = tf.constant(seq_example.SerializeToString()) | |
decoded_tensors = decoder.decode(input_tensor) | |
output_tensor = parser(decoded_tensors) | |
image_features, label = output_tensor | |
image = image_features['image'] | |
self.assertAllEqual(image.shape, (2, 224, 224, 3)) | |
self.assertAllEqual(label.shape, (600,)) | |
def test_video_input_augmentation_returns_shape(self): | |
params = exp_cfg.kinetics600(is_training=True) | |
params.feature_shape = (2, 224, 224, 3) | |
params.min_image_size = 224 | |
params.temporal_stride = 2 | |
params.aug_type = common.Augmentation( | |
type='autoaug', autoaug=common.AutoAugment()) | |
decoder = video_input.Decoder() | |
parser = video_input.Parser(params).parse_fn(params.is_training) | |
seq_example, label = fake_seq_example() | |
input_tensor = tf.constant(seq_example.SerializeToString()) | |
decoded_tensors = decoder.decode(input_tensor) | |
output_tensor = parser(decoded_tensors) | |
image_features, label = output_tensor | |
image = image_features['image'] | |
self.assertAllEqual(image.shape, (2, 224, 224, 3)) | |
self.assertAllEqual(label.shape, (600,)) | |
def test_video_input_image_shape_label_type(self): | |
params = exp_cfg.kinetics600(is_training=True) | |
params.feature_shape = (2, 168, 224, 1) | |
params.min_image_size = 168 | |
params.label_dtype = 'float32' | |
params.one_hot = False | |
decoder = video_input.Decoder() | |
parser = video_input.Parser(params).parse_fn(params.is_training) | |
seq_example, label = fake_seq_example() | |
input_tensor = tf.constant(seq_example.SerializeToString()) | |
decoded_tensors = decoder.decode(input_tensor) | |
output_tensor = parser(decoded_tensors) | |
image_features, label = output_tensor | |
image = image_features['image'] | |
self.assertAllEqual(image.shape, (2, 168, 224, 1)) | |
self.assertAllEqual(label.shape, (1,)) | |
self.assertDTypeEqual(label, tf.float32) | |
if __name__ == '__main__': | |
tf.test.main() | |