Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The COCO-style evaluator. | |
The following snippet demonstrates the use of interfaces: | |
evaluator = COCOEvaluator(...) | |
for _ in range(num_evals): | |
for _ in range(num_batches_per_eval): | |
predictions, groundtruth = predictor.predict(...) # pop a batch. | |
evaluator.update_state(groundtruths, predictions) | |
evaluator.result() # finish one full eval and reset states. | |
See also: https://github.com/cocodataset/cocoapi/ | |
""" | |
import atexit | |
import tempfile | |
# Import libraries | |
from absl import logging | |
import numpy as np | |
from pycocotools import cocoeval | |
import six | |
import tensorflow as tf, tf_keras | |
from official.vision.evaluation import coco_utils | |
class COCOEvaluator(object): | |
"""COCO evaluation metric class.""" | |
def __init__(self, | |
annotation_file, | |
include_mask, | |
include_keypoint=False, | |
need_rescale_bboxes=True, | |
need_rescale_keypoints=False, | |
per_category_metrics=False, | |
max_num_eval_detections=100, | |
kpt_oks_sigmas=None): | |
"""Constructs COCO evaluation class. | |
The class provides the interface to COCO metrics_fn. The | |
_update_op() takes detections from each image and push them to | |
self.detections. The _evaluate() loads a JSON file in COCO annotation format | |
as the ground-truths and runs COCO evaluation. | |
Args: | |
annotation_file: a JSON file that stores annotations of the eval dataset. | |
If `annotation_file` is None, ground-truth annotations will be loaded | |
from the dataloader. | |
include_mask: a boolean to indicate whether or not to include the mask | |
eval. | |
include_keypoint: a boolean to indicate whether or not to include the | |
keypoint eval. | |
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back | |
to absolute values (`image_info` is needed in this case). | |
need_rescale_keypoints: If true keypoints in `predictions` will be | |
rescaled back to absolute values (`image_info` is needed in this case). | |
per_category_metrics: Whether to return per category metrics. | |
max_num_eval_detections: Maximum number of detections to evaluate in coco | |
eval api. Default at 100. | |
kpt_oks_sigmas: The sigmas used to calculate keypoint OKS. See | |
http://cocodataset.org/#keypoints-eval. When None, it will use the | |
defaults in COCO. | |
Raises: | |
ValueError: if max_num_eval_detections is not an integer. | |
""" | |
if annotation_file: | |
if annotation_file.startswith('gs://'): | |
_, local_val_json = tempfile.mkstemp(suffix='.json') | |
tf.io.gfile.remove(local_val_json) | |
tf.io.gfile.copy(annotation_file, local_val_json) | |
atexit.register(tf.io.gfile.remove, local_val_json) | |
else: | |
local_val_json = annotation_file | |
self._coco_gt = coco_utils.COCOWrapper( | |
eval_type=('mask' if include_mask else 'box'), | |
annotation_file=local_val_json) | |
self._annotation_file = annotation_file | |
self._include_mask = include_mask | |
self._include_keypoint = include_keypoint | |
self._per_category_metrics = per_category_metrics | |
if max_num_eval_detections is None or not isinstance( | |
max_num_eval_detections, int): | |
raise ValueError('max_num_eval_detections must be an integer.') | |
self._metric_names = [ | |
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10', | |
f'ARmax{max_num_eval_detections}', 'ARs', 'ARm', 'ARl' | |
] | |
self.max_num_eval_detections = max_num_eval_detections | |
self._required_prediction_fields = [ | |
'source_id', 'num_detections', 'detection_classes', 'detection_scores', | |
'detection_boxes' | |
] | |
self._need_rescale_bboxes = need_rescale_bboxes | |
self._need_rescale_keypoints = need_rescale_keypoints | |
if self._need_rescale_bboxes or self._need_rescale_keypoints: | |
self._required_prediction_fields.append('image_info') | |
self._required_groundtruth_fields = [ | |
'source_id', 'height', 'width', 'classes', 'boxes' | |
] | |
if self._include_mask: | |
mask_metric_names = ['mask_' + x for x in self._metric_names] | |
self._metric_names.extend(mask_metric_names) | |
self._required_prediction_fields.extend(['detection_masks']) | |
self._required_groundtruth_fields.extend(['masks']) | |
if self._include_keypoint: | |
keypoint_metric_names = [ | |
'AP', 'AP50', 'AP75', 'APm', 'APl', 'ARmax1', 'ARmax10', | |
f'ARmax{max_num_eval_detections}', 'ARm', 'ARl' | |
] | |
keypoint_metric_names = ['keypoint_' + x for x in keypoint_metric_names] | |
self._metric_names.extend(keypoint_metric_names) | |
self._required_prediction_fields.extend(['detection_keypoints']) | |
self._required_groundtruth_fields.extend(['keypoints']) | |
self._kpt_oks_sigmas = kpt_oks_sigmas | |
self.reset_states() | |
def name(self): | |
return 'coco_metric' | |
def reset_states(self): | |
"""Resets internal states for a fresh run.""" | |
self._predictions = {} | |
if not self._annotation_file: | |
self._groundtruths = {} | |
def result(self): | |
"""Evaluates detection results, and reset_states.""" | |
metric_dict = self.evaluate() | |
# Cleans up the internal variables in order for a fresh eval next time. | |
self.reset_states() | |
return metric_dict | |
def evaluate(self): | |
"""Evaluates with detections from all images with COCO API. | |
Returns: | |
coco_metric: float numpy array with shape [24] representing the | |
coco-style evaluation metrics (box and mask). | |
""" | |
if not self._annotation_file: | |
logging.info('There is no annotation_file in COCOEvaluator.') | |
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset( | |
self._groundtruths) | |
coco_gt = coco_utils.COCOWrapper( | |
eval_type=('mask' if self._include_mask else 'box'), | |
gt_dataset=gt_dataset) | |
else: | |
logging.info('Using annotation file: %s', self._annotation_file) | |
coco_gt = self._coco_gt | |
coco_predictions = coco_utils.convert_predictions_to_coco_annotations( | |
self._predictions) | |
coco_dt = coco_gt.loadRes(predictions=coco_predictions) | |
image_ids = [ann['image_id'] for ann in coco_predictions] | |
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox') | |
coco_eval.params.imgIds = image_ids | |
coco_eval.params.maxDets[2] = self.max_num_eval_detections | |
coco_eval.evaluate() | |
coco_eval.accumulate() | |
coco_eval.summarize() | |
coco_metrics = coco_eval.stats | |
metrics = coco_metrics | |
if self._include_mask: | |
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm') | |
mcoco_eval.params.imgIds = image_ids | |
mcoco_eval.evaluate() | |
mcoco_eval.accumulate() | |
mcoco_eval.summarize() | |
mask_coco_metrics = mcoco_eval.stats | |
metrics = np.hstack((metrics, mask_coco_metrics)) | |
if self._include_keypoint: | |
kcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='keypoints', | |
kpt_oks_sigmas=self._kpt_oks_sigmas) | |
kcoco_eval.params.imgIds = image_ids | |
kcoco_eval.evaluate() | |
kcoco_eval.accumulate() | |
kcoco_eval.summarize() | |
keypoint_coco_metrics = kcoco_eval.stats | |
metrics = np.hstack((metrics, keypoint_coco_metrics)) | |
metrics_dict = {} | |
for i, name in enumerate(self._metric_names): | |
metrics_dict[name] = metrics[i].astype(np.float32) | |
# Adds metrics per category. | |
if self._per_category_metrics: | |
metrics_dict.update(self._retrieve_per_category_metrics(coco_eval)) | |
if self._include_mask: | |
metrics_dict.update(self._retrieve_per_category_metrics( | |
mcoco_eval, prefix='mask')) | |
if self._include_keypoint: | |
metrics_dict.update(self._retrieve_per_category_metrics( | |
mcoco_eval, prefix='keypoints')) | |
return metrics_dict | |
def _retrieve_per_category_metrics(self, coco_eval, prefix=''): | |
"""Retrieves and per-category metrics and retuns them in a dict. | |
Args: | |
coco_eval: a cocoeval.COCOeval object containing evaluation data. | |
prefix: str, A string used to prefix metric names. | |
Returns: | |
metrics_dict: A dictionary with per category metrics. | |
""" | |
metrics_dict = {} | |
if prefix: | |
prefix = prefix + ' ' | |
if hasattr(coco_eval, 'category_stats'): | |
for category_index, category_id in enumerate(coco_eval.params.catIds): | |
if self._annotation_file: | |
coco_category = self._coco_gt.cats[category_id] | |
# if 'name' is available use it, otherwise use `id` | |
category_display_name = coco_category.get('name', category_id) | |
else: | |
category_display_name = category_id | |
if 'keypoints' in prefix: | |
metrics_dict_keys = [ | |
'Precision mAP ByCategory', | |
'Precision mAP ByCategory@50IoU', | |
'Precision mAP ByCategory@75IoU', | |
'Precision mAP ByCategory (medium)', | |
'Precision mAP ByCategory (large)', | |
'Recall AR@1 ByCategory', | |
'Recall AR@10 ByCategory', | |
'Recall AR@100 ByCategory', | |
'Recall AR (medium) ByCategory', | |
'Recall AR (large) ByCategory', | |
] | |
else: | |
metrics_dict_keys = [ | |
'Precision mAP ByCategory', | |
'Precision mAP ByCategory@50IoU', | |
'Precision mAP ByCategory@75IoU', | |
'Precision mAP ByCategory (small)', | |
'Precision mAP ByCategory (medium)', | |
'Precision mAP ByCategory (large)', | |
'Recall AR@1 ByCategory', | |
'Recall AR@10 ByCategory', | |
'Recall AR@100 ByCategory', | |
'Recall AR (small) ByCategory', | |
'Recall AR (medium) ByCategory', | |
'Recall AR (large) ByCategory', | |
] | |
for idx, key in enumerate(metrics_dict_keys): | |
metrics_dict[prefix + key + '/{}'.format( | |
category_display_name)] = coco_eval.category_stats[idx][ | |
category_index].astype(np.float32) | |
return metrics_dict | |
def _process_bbox_predictions(self, predictions): | |
image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2)) | |
predictions['detection_boxes'] = ( | |
predictions['detection_boxes'].astype(np.float32)) | |
predictions['detection_boxes'] /= image_scale | |
if 'detection_outer_boxes' in predictions: | |
predictions['detection_outer_boxes'] = ( | |
predictions['detection_outer_boxes'].astype(np.float32)) | |
predictions['detection_outer_boxes'] /= image_scale | |
def _process_keypoints_predictions(self, predictions): | |
image_scale = tf.reshape(predictions['image_info'][:, 2:3, :], | |
[-1, 1, 1, 2]) | |
predictions['detection_keypoints'] = ( | |
predictions['detection_keypoints'].astype(np.float32)) | |
predictions['detection_keypoints'] /= image_scale | |
def _convert_to_numpy(self, groundtruths, predictions): | |
"""Converts tesnors to numpy arrays.""" | |
if groundtruths: | |
labels = tf.nest.map_structure(lambda x: x.numpy(), groundtruths) | |
numpy_groundtruths = {} | |
for key, val in labels.items(): | |
if isinstance(val, tuple): | |
val = np.concatenate(val) | |
numpy_groundtruths[key] = val | |
else: | |
numpy_groundtruths = groundtruths | |
if predictions: | |
outputs = tf.nest.map_structure(lambda x: x.numpy(), predictions) | |
numpy_predictions = {} | |
for key, val in outputs.items(): | |
if isinstance(val, tuple): | |
val = np.concatenate(val) | |
numpy_predictions[key] = val | |
else: | |
numpy_predictions = predictions | |
return numpy_groundtruths, numpy_predictions | |
def update_state(self, groundtruths, predictions): | |
"""Update and aggregate detection results and ground-truth data. | |
Args: | |
groundtruths: a dictionary of Tensors including the fields below. | |
See also different parsers under `../dataloader` for more details. | |
Required fields: | |
- source_id: a numpy array of int or string of shape [batch_size]. | |
- height: a numpy array of int of shape [batch_size]. | |
- width: a numpy array of int of shape [batch_size]. | |
- num_detections: a numpy array of int of shape [batch_size]. | |
- boxes: a numpy array of float of shape [batch_size, K, 4]. | |
- classes: a numpy array of int of shape [batch_size, K]. | |
Optional fields: | |
- is_crowds: a numpy array of int of shape [batch_size, K]. If the | |
field is absent, it is assumed that this instance is not crowd. | |
- areas: a numy array of float of shape [batch_size, K]. If the | |
field is absent, the area is calculated using either boxes or | |
masks depending on which one is available. | |
- masks: a numpy array of float of shape | |
[batch_size, K, mask_height, mask_width], | |
predictions: a dictionary of tensors including the fields below. | |
See different parsers under `../dataloader` for more details. | |
Required fields: | |
- source_id: a numpy array of int or string of shape [batch_size]. | |
- image_info [if `need_rescale_bboxes` is True]: a numpy array of | |
float of shape [batch_size, 4, 2]. | |
- num_detections: a numpy array of | |
int of shape [batch_size]. | |
- detection_boxes: a numpy array of float of shape [batch_size, K, 4]. | |
- detection_classes: a numpy array of int of shape [batch_size, K]. | |
- detection_scores: a numpy array of float of shape [batch_size, K]. | |
Optional fields: | |
- detection_masks: a numpy array of float of shape | |
[batch_size, K, mask_height, mask_width]. | |
Raises: | |
ValueError: if the required prediction or ground-truth fields are not | |
present in the incoming `predictions` or `groundtruths`. | |
""" | |
groundtruths, predictions = self._convert_to_numpy(groundtruths, | |
predictions) | |
for k in self._required_prediction_fields: | |
if k not in predictions: | |
raise ValueError( | |
'Missing the required key `{}` in predictions!'.format(k)) | |
if self._need_rescale_bboxes: | |
self._process_bbox_predictions(predictions) | |
if self._need_rescale_keypoints: | |
self._process_keypoints_predictions(predictions) | |
for k, v in six.iteritems(predictions): | |
if k not in self._predictions: | |
self._predictions[k] = [v] | |
else: | |
self._predictions[k].append(v) | |
if not self._annotation_file: | |
assert groundtruths | |
for k in self._required_groundtruth_fields: | |
if k not in groundtruths: | |
raise ValueError( | |
'Missing the required key `{}` in groundtruths!'.format(k)) | |
for k, v in six.iteritems(groundtruths): | |
if k not in self._groundtruths: | |
self._groundtruths[k] = [v] | |
else: | |
self._groundtruths[k].append(v) | |