deanna-emery's picture
updates
93528c6
raw
history blame
15.6 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The COCO-style evaluator.
The following snippet demonstrates the use of interfaces:
evaluator = COCOEvaluator(...)
for _ in range(num_evals):
for _ in range(num_batches_per_eval):
predictions, groundtruth = predictor.predict(...) # pop a batch.
evaluator.update_state(groundtruths, predictions)
evaluator.result() # finish one full eval and reset states.
See also: https://github.com/cocodataset/cocoapi/
"""
import atexit
import tempfile
# Import libraries
from absl import logging
import numpy as np
from pycocotools import cocoeval
import six
import tensorflow as tf, tf_keras
from official.vision.evaluation import coco_utils
class COCOEvaluator(object):
"""COCO evaluation metric class."""
def __init__(self,
annotation_file,
include_mask,
include_keypoint=False,
need_rescale_bboxes=True,
need_rescale_keypoints=False,
per_category_metrics=False,
max_num_eval_detections=100,
kpt_oks_sigmas=None):
"""Constructs COCO evaluation class.
The class provides the interface to COCO metrics_fn. The
_update_op() takes detections from each image and push them to
self.detections. The _evaluate() loads a JSON file in COCO annotation format
as the ground-truths and runs COCO evaluation.
Args:
annotation_file: a JSON file that stores annotations of the eval dataset.
If `annotation_file` is None, ground-truth annotations will be loaded
from the dataloader.
include_mask: a boolean to indicate whether or not to include the mask
eval.
include_keypoint: a boolean to indicate whether or not to include the
keypoint eval.
need_rescale_bboxes: If true bboxes in `predictions` will be rescaled back
to absolute values (`image_info` is needed in this case).
need_rescale_keypoints: If true keypoints in `predictions` will be
rescaled back to absolute values (`image_info` is needed in this case).
per_category_metrics: Whether to return per category metrics.
max_num_eval_detections: Maximum number of detections to evaluate in coco
eval api. Default at 100.
kpt_oks_sigmas: The sigmas used to calculate keypoint OKS. See
http://cocodataset.org/#keypoints-eval. When None, it will use the
defaults in COCO.
Raises:
ValueError: if max_num_eval_detections is not an integer.
"""
if annotation_file:
if annotation_file.startswith('gs://'):
_, local_val_json = tempfile.mkstemp(suffix='.json')
tf.io.gfile.remove(local_val_json)
tf.io.gfile.copy(annotation_file, local_val_json)
atexit.register(tf.io.gfile.remove, local_val_json)
else:
local_val_json = annotation_file
self._coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if include_mask else 'box'),
annotation_file=local_val_json)
self._annotation_file = annotation_file
self._include_mask = include_mask
self._include_keypoint = include_keypoint
self._per_category_metrics = per_category_metrics
if max_num_eval_detections is None or not isinstance(
max_num_eval_detections, int):
raise ValueError('max_num_eval_detections must be an integer.')
self._metric_names = [
'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'ARmax1', 'ARmax10',
f'ARmax{max_num_eval_detections}', 'ARs', 'ARm', 'ARl'
]
self.max_num_eval_detections = max_num_eval_detections
self._required_prediction_fields = [
'source_id', 'num_detections', 'detection_classes', 'detection_scores',
'detection_boxes'
]
self._need_rescale_bboxes = need_rescale_bboxes
self._need_rescale_keypoints = need_rescale_keypoints
if self._need_rescale_bboxes or self._need_rescale_keypoints:
self._required_prediction_fields.append('image_info')
self._required_groundtruth_fields = [
'source_id', 'height', 'width', 'classes', 'boxes'
]
if self._include_mask:
mask_metric_names = ['mask_' + x for x in self._metric_names]
self._metric_names.extend(mask_metric_names)
self._required_prediction_fields.extend(['detection_masks'])
self._required_groundtruth_fields.extend(['masks'])
if self._include_keypoint:
keypoint_metric_names = [
'AP', 'AP50', 'AP75', 'APm', 'APl', 'ARmax1', 'ARmax10',
f'ARmax{max_num_eval_detections}', 'ARm', 'ARl'
]
keypoint_metric_names = ['keypoint_' + x for x in keypoint_metric_names]
self._metric_names.extend(keypoint_metric_names)
self._required_prediction_fields.extend(['detection_keypoints'])
self._required_groundtruth_fields.extend(['keypoints'])
self._kpt_oks_sigmas = kpt_oks_sigmas
self.reset_states()
@property
def name(self):
return 'coco_metric'
def reset_states(self):
"""Resets internal states for a fresh run."""
self._predictions = {}
if not self._annotation_file:
self._groundtruths = {}
def result(self):
"""Evaluates detection results, and reset_states."""
metric_dict = self.evaluate()
# Cleans up the internal variables in order for a fresh eval next time.
self.reset_states()
return metric_dict
def evaluate(self):
"""Evaluates with detections from all images with COCO API.
Returns:
coco_metric: float numpy array with shape [24] representing the
coco-style evaluation metrics (box and mask).
"""
if not self._annotation_file:
logging.info('There is no annotation_file in COCOEvaluator.')
gt_dataset = coco_utils.convert_groundtruths_to_coco_dataset(
self._groundtruths)
coco_gt = coco_utils.COCOWrapper(
eval_type=('mask' if self._include_mask else 'box'),
gt_dataset=gt_dataset)
else:
logging.info('Using annotation file: %s', self._annotation_file)
coco_gt = self._coco_gt
coco_predictions = coco_utils.convert_predictions_to_coco_annotations(
self._predictions)
coco_dt = coco_gt.loadRes(predictions=coco_predictions)
image_ids = [ann['image_id'] for ann in coco_predictions]
coco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='bbox')
coco_eval.params.imgIds = image_ids
coco_eval.params.maxDets[2] = self.max_num_eval_detections
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
coco_metrics = coco_eval.stats
metrics = coco_metrics
if self._include_mask:
mcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='segm')
mcoco_eval.params.imgIds = image_ids
mcoco_eval.evaluate()
mcoco_eval.accumulate()
mcoco_eval.summarize()
mask_coco_metrics = mcoco_eval.stats
metrics = np.hstack((metrics, mask_coco_metrics))
if self._include_keypoint:
kcoco_eval = cocoeval.COCOeval(coco_gt, coco_dt, iouType='keypoints',
kpt_oks_sigmas=self._kpt_oks_sigmas)
kcoco_eval.params.imgIds = image_ids
kcoco_eval.evaluate()
kcoco_eval.accumulate()
kcoco_eval.summarize()
keypoint_coco_metrics = kcoco_eval.stats
metrics = np.hstack((metrics, keypoint_coco_metrics))
metrics_dict = {}
for i, name in enumerate(self._metric_names):
metrics_dict[name] = metrics[i].astype(np.float32)
# Adds metrics per category.
if self._per_category_metrics:
metrics_dict.update(self._retrieve_per_category_metrics(coco_eval))
if self._include_mask:
metrics_dict.update(self._retrieve_per_category_metrics(
mcoco_eval, prefix='mask'))
if self._include_keypoint:
metrics_dict.update(self._retrieve_per_category_metrics(
mcoco_eval, prefix='keypoints'))
return metrics_dict
def _retrieve_per_category_metrics(self, coco_eval, prefix=''):
"""Retrieves and per-category metrics and retuns them in a dict.
Args:
coco_eval: a cocoeval.COCOeval object containing evaluation data.
prefix: str, A string used to prefix metric names.
Returns:
metrics_dict: A dictionary with per category metrics.
"""
metrics_dict = {}
if prefix:
prefix = prefix + ' '
if hasattr(coco_eval, 'category_stats'):
for category_index, category_id in enumerate(coco_eval.params.catIds):
if self._annotation_file:
coco_category = self._coco_gt.cats[category_id]
# if 'name' is available use it, otherwise use `id`
category_display_name = coco_category.get('name', category_id)
else:
category_display_name = category_id
if 'keypoints' in prefix:
metrics_dict_keys = [
'Precision mAP ByCategory',
'Precision mAP ByCategory@50IoU',
'Precision mAP ByCategory@75IoU',
'Precision mAP ByCategory (medium)',
'Precision mAP ByCategory (large)',
'Recall AR@1 ByCategory',
'Recall AR@10 ByCategory',
'Recall AR@100 ByCategory',
'Recall AR (medium) ByCategory',
'Recall AR (large) ByCategory',
]
else:
metrics_dict_keys = [
'Precision mAP ByCategory',
'Precision mAP ByCategory@50IoU',
'Precision mAP ByCategory@75IoU',
'Precision mAP ByCategory (small)',
'Precision mAP ByCategory (medium)',
'Precision mAP ByCategory (large)',
'Recall AR@1 ByCategory',
'Recall AR@10 ByCategory',
'Recall AR@100 ByCategory',
'Recall AR (small) ByCategory',
'Recall AR (medium) ByCategory',
'Recall AR (large) ByCategory',
]
for idx, key in enumerate(metrics_dict_keys):
metrics_dict[prefix + key + '/{}'.format(
category_display_name)] = coco_eval.category_stats[idx][
category_index].astype(np.float32)
return metrics_dict
def _process_bbox_predictions(self, predictions):
image_scale = np.tile(predictions['image_info'][:, 2:3, :], (1, 1, 2))
predictions['detection_boxes'] = (
predictions['detection_boxes'].astype(np.float32))
predictions['detection_boxes'] /= image_scale
if 'detection_outer_boxes' in predictions:
predictions['detection_outer_boxes'] = (
predictions['detection_outer_boxes'].astype(np.float32))
predictions['detection_outer_boxes'] /= image_scale
def _process_keypoints_predictions(self, predictions):
image_scale = tf.reshape(predictions['image_info'][:, 2:3, :],
[-1, 1, 1, 2])
predictions['detection_keypoints'] = (
predictions['detection_keypoints'].astype(np.float32))
predictions['detection_keypoints'] /= image_scale
def _convert_to_numpy(self, groundtruths, predictions):
"""Converts tesnors to numpy arrays."""
if groundtruths:
labels = tf.nest.map_structure(lambda x: x.numpy(), groundtruths)
numpy_groundtruths = {}
for key, val in labels.items():
if isinstance(val, tuple):
val = np.concatenate(val)
numpy_groundtruths[key] = val
else:
numpy_groundtruths = groundtruths
if predictions:
outputs = tf.nest.map_structure(lambda x: x.numpy(), predictions)
numpy_predictions = {}
for key, val in outputs.items():
if isinstance(val, tuple):
val = np.concatenate(val)
numpy_predictions[key] = val
else:
numpy_predictions = predictions
return numpy_groundtruths, numpy_predictions
def update_state(self, groundtruths, predictions):
"""Update and aggregate detection results and ground-truth data.
Args:
groundtruths: a dictionary of Tensors including the fields below.
See also different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- height: a numpy array of int of shape [batch_size].
- width: a numpy array of int of shape [batch_size].
- num_detections: a numpy array of int of shape [batch_size].
- boxes: a numpy array of float of shape [batch_size, K, 4].
- classes: a numpy array of int of shape [batch_size, K].
Optional fields:
- is_crowds: a numpy array of int of shape [batch_size, K]. If the
field is absent, it is assumed that this instance is not crowd.
- areas: a numy array of float of shape [batch_size, K]. If the
field is absent, the area is calculated using either boxes or
masks depending on which one is available.
- masks: a numpy array of float of shape
[batch_size, K, mask_height, mask_width],
predictions: a dictionary of tensors including the fields below.
See different parsers under `../dataloader` for more details.
Required fields:
- source_id: a numpy array of int or string of shape [batch_size].
- image_info [if `need_rescale_bboxes` is True]: a numpy array of
float of shape [batch_size, 4, 2].
- num_detections: a numpy array of
int of shape [batch_size].
- detection_boxes: a numpy array of float of shape [batch_size, K, 4].
- detection_classes: a numpy array of int of shape [batch_size, K].
- detection_scores: a numpy array of float of shape [batch_size, K].
Optional fields:
- detection_masks: a numpy array of float of shape
[batch_size, K, mask_height, mask_width].
Raises:
ValueError: if the required prediction or ground-truth fields are not
present in the incoming `predictions` or `groundtruths`.
"""
groundtruths, predictions = self._convert_to_numpy(groundtruths,
predictions)
for k in self._required_prediction_fields:
if k not in predictions:
raise ValueError(
'Missing the required key `{}` in predictions!'.format(k))
if self._need_rescale_bboxes:
self._process_bbox_predictions(predictions)
if self._need_rescale_keypoints:
self._process_keypoints_predictions(predictions)
for k, v in six.iteritems(predictions):
if k not in self._predictions:
self._predictions[k] = [v]
else:
self._predictions[k].append(v)
if not self._annotation_file:
assert groundtruths
for k in self._required_groundtruth_fields:
if k not in groundtruths:
raise ValueError(
'Missing the required key `{}` in groundtruths!'.format(k))
for k, v in six.iteritems(groundtruths):
if k not in self._groundtruths:
self._groundtruths[k] = [v]
else:
self._groundtruths[k].append(v)