deanna-emery's picture
updates
93528c6
raw
history blame
4.28 kB
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for FPN."""
# Import libraries
from absl.testing import parameterized
import tensorflow as tf, tf_keras
from official.vision.modeling.backbones import mobilenet
from official.vision.modeling.backbones import resnet
from official.vision.modeling.decoders import fpn
class FPNTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
(256, 3, 7, False, False, 'sum'),
(256, 3, 7, False, True, 'sum'),
(256, 3, 7, True, False, 'concat'),
(256, 3, 7, True, True, 'concat'),
)
def test_network_creation(self, input_size, min_level, max_level,
use_separable_conv, use_keras_layer, fusion_type):
"""Test creation of FPN."""
tf_keras.backend.set_image_data_format('channels_last')
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
backbone = resnet.ResNet(model_id=50)
network = fpn.FPN(
input_specs=backbone.output_specs,
min_level=min_level,
max_level=max_level,
fusion_type=fusion_type,
use_separable_conv=use_separable_conv,
use_keras_layer=use_keras_layer)
endpoints = backbone(inputs)
feats = network(endpoints)
for level in range(min_level, max_level + 1):
self.assertIn(str(level), feats)
self.assertAllEqual(
[1, input_size // 2**level, input_size // 2**level, 256],
feats[str(level)].shape.as_list())
@parameterized.parameters(
(256, 3, 7, False, False),
(256, 3, 7, False, True),
(256, 3, 7, True, False),
(256, 3, 7, True, True),
)
def test_network_creation_with_mobilenet(self, input_size, min_level,
max_level, use_separable_conv,
use_keras_layer):
"""Test creation of FPN with mobilenet backbone."""
tf_keras.backend.set_image_data_format('channels_last')
inputs = tf_keras.Input(shape=(input_size, input_size, 3), batch_size=1)
backbone = mobilenet.MobileNet(model_id='MobileNetV2')
network = fpn.FPN(
input_specs=backbone.output_specs,
min_level=min_level,
max_level=max_level,
use_separable_conv=use_separable_conv,
use_keras_layer=use_keras_layer)
endpoints = backbone(inputs)
feats = network(endpoints)
for level in range(min_level, max_level + 1):
self.assertIn(str(level), feats)
self.assertAllEqual(
[1, input_size // 2**level, input_size // 2**level, 256],
feats[str(level)].shape.as_list())
def test_serialize_deserialize(self):
# Create a network object that sets all of its config options.
kwargs = dict(
input_specs=resnet.ResNet(model_id=50).output_specs,
min_level=3,
max_level=7,
num_filters=256,
fusion_type='sum',
use_separable_conv=False,
use_keras_layer=False,
use_sync_bn=False,
activation='relu',
norm_momentum=0.99,
norm_epsilon=0.001,
kernel_initializer='VarianceScaling',
kernel_regularizer=None,
bias_regularizer=None,
)
network = fpn.FPN(**kwargs)
expected_config = dict(kwargs)
self.assertEqual(network.get_config(), expected_config)
# Create another network object from the first object's config.
new_network = fpn.FPN.from_config(network.get_config())
# Validate that the config can be forced to JSON.
_ = new_network.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(network.get_config(), new_network.get_config())
if __name__ == '__main__':
tf.test.main()