Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Unit tests for the classifier trainer models.""" | |
import functools | |
import json | |
import os | |
import sys | |
from typing import Any, Callable, Iterable, Mapping, MutableMapping, Optional, Tuple | |
from absl import flags | |
from absl.testing import flagsaver | |
from absl.testing import parameterized | |
import tensorflow as tf, tf_keras | |
from tensorflow.python.distribute import combinations | |
from tensorflow.python.distribute import strategy_combinations | |
from official.legacy.image_classification import classifier_trainer | |
from official.utils.flags import core as flags_core | |
classifier_trainer.define_classifier_flags() | |
def distribution_strategy_combinations() -> Iterable[Tuple[Any, ...]]: | |
"""Returns the combinations of end-to-end tests to run.""" | |
return combinations.combine( | |
distribution=[ | |
strategy_combinations.default_strategy, | |
strategy_combinations.cloud_tpu_strategy, | |
strategy_combinations.one_device_strategy_gpu, | |
strategy_combinations.mirrored_strategy_with_two_gpus, | |
], | |
model=[ | |
'efficientnet', | |
'resnet', | |
'vgg', | |
], | |
dataset=[ | |
'imagenet', | |
], | |
) | |
def get_params_override(params_override: Mapping[str, Any]) -> str: | |
"""Converts params_override dict to string command.""" | |
return '--params_override=' + json.dumps(params_override) | |
def basic_params_override(dtype: str = 'float32') -> MutableMapping[str, Any]: | |
"""Returns a basic parameter configuration for testing.""" | |
return { | |
'train_dataset': { | |
'builder': 'synthetic', | |
'use_per_replica_batch_size': True, | |
'batch_size': 1, | |
'image_size': 224, | |
'dtype': dtype, | |
}, | |
'validation_dataset': { | |
'builder': 'synthetic', | |
'batch_size': 1, | |
'use_per_replica_batch_size': True, | |
'image_size': 224, | |
'dtype': dtype, | |
}, | |
'train': { | |
'steps': 1, | |
'epochs': 1, | |
'callbacks': { | |
'enable_checkpoint_and_export': True, | |
'enable_tensorboard': False, | |
}, | |
}, | |
'evaluation': { | |
'steps': 1, | |
}, | |
} | |
def run_end_to_end(main: Callable[[Any], None], | |
extra_flags: Optional[Iterable[str]] = None, | |
model_dir: Optional[str] = None): | |
"""Runs the classifier trainer end-to-end.""" | |
extra_flags = [] if extra_flags is None else extra_flags | |
args = [sys.argv[0], '--model_dir', model_dir] + extra_flags | |
flags_core.parse_flags(argv=args) | |
main(flags.FLAGS) | |
class ClassifierTest(tf.test.TestCase, parameterized.TestCase): | |
"""Unit tests for Keras models.""" | |
_tempdir = None | |
def setUpClass(cls): # pylint: disable=invalid-name | |
super(ClassifierTest, cls).setUpClass() | |
def tearDown(self): | |
super(ClassifierTest, self).tearDown() | |
tf.io.gfile.rmtree(self.get_temp_dir()) | |
def test_end_to_end_train_and_eval(self, distribution, model, dataset): | |
"""Test train_and_eval and export for Keras classifier models.""" | |
# Some parameters are not defined as flags (e.g. cannot run | |
# classifier_train.py --batch_size=...) by design, so use | |
# "--params_override=..." instead | |
model_dir = self.create_tempdir().full_path | |
base_flags = [ | |
'--data_dir=not_used', | |
'--model_type=' + model, | |
'--dataset=' + dataset, | |
] | |
train_and_eval_flags = base_flags + [ | |
get_params_override(basic_params_override()), | |
'--mode=train_and_eval', | |
] | |
run = functools.partial( | |
classifier_trainer.run, strategy_override=distribution) | |
run_end_to_end( | |
main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) | |
def test_gpu_train(self, distribution, model, dataset, dtype): | |
"""Test train_and_eval and export for Keras classifier models.""" | |
# Some parameters are not defined as flags (e.g. cannot run | |
# classifier_train.py --batch_size=...) by design, so use | |
# "--params_override=..." instead | |
model_dir = self.create_tempdir().full_path | |
base_flags = [ | |
'--data_dir=not_used', | |
'--model_type=' + model, | |
'--dataset=' + dataset, | |
] | |
train_and_eval_flags = base_flags + [ | |
get_params_override(basic_params_override(dtype)), | |
'--mode=train_and_eval', | |
] | |
export_params = basic_params_override() | |
export_path = os.path.join(model_dir, 'export') | |
export_params['export'] = {} | |
export_params['export']['destination'] = export_path | |
export_flags = base_flags + [ | |
'--mode=export_only', | |
get_params_override(export_params) | |
] | |
run = functools.partial( | |
classifier_trainer.run, strategy_override=distribution) | |
run_end_to_end( | |
main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) | |
run_end_to_end(main=run, extra_flags=export_flags, model_dir=model_dir) | |
self.assertTrue(os.path.exists(export_path)) | |
def test_tpu_train(self, distribution, model, dataset, dtype): | |
"""Test train_and_eval and export for Keras classifier models.""" | |
# Some parameters are not defined as flags (e.g. cannot run | |
# classifier_train.py --batch_size=...) by design, so use | |
# "--params_override=..." instead | |
model_dir = self.create_tempdir().full_path | |
base_flags = [ | |
'--data_dir=not_used', | |
'--model_type=' + model, | |
'--dataset=' + dataset, | |
] | |
train_and_eval_flags = base_flags + [ | |
get_params_override(basic_params_override(dtype)), | |
'--mode=train_and_eval', | |
] | |
run = functools.partial( | |
classifier_trainer.run, strategy_override=distribution) | |
run_end_to_end( | |
main=run, extra_flags=train_and_eval_flags, model_dir=model_dir) | |
def test_end_to_end_invalid_mode(self, distribution, model, dataset): | |
"""Test the Keras EfficientNet model with `strategy`.""" | |
model_dir = self.create_tempdir().full_path | |
extra_flags = [ | |
'--data_dir=not_used', | |
'--mode=invalid_mode', | |
'--model_type=' + model, | |
'--dataset=' + dataset, | |
get_params_override(basic_params_override()), | |
] | |
run = functools.partial( | |
classifier_trainer.run, strategy_override=distribution) | |
with self.assertRaises(ValueError): | |
run_end_to_end(main=run, extra_flags=extra_flags, model_dir=model_dir) | |
if __name__ == '__main__': | |
tf.test.main() | |