Spaces:
Runtime error
Runtime error
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Learning rate utilities for vision tasks.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from typing import Any, Mapping, Optional | |
import numpy as np | |
import tensorflow as tf, tf_keras | |
BASE_LEARNING_RATE = 0.1 | |
class WarmupDecaySchedule(tf_keras.optimizers.schedules.LearningRateSchedule): | |
"""A wrapper for LearningRateSchedule that includes warmup steps.""" | |
def __init__(self, | |
lr_schedule: tf_keras.optimizers.schedules.LearningRateSchedule, | |
warmup_steps: int, | |
warmup_lr: Optional[float] = None): | |
"""Add warmup decay to a learning rate schedule. | |
Args: | |
lr_schedule: base learning rate scheduler | |
warmup_steps: number of warmup steps | |
warmup_lr: an optional field for the final warmup learning rate. This | |
should be provided if the base `lr_schedule` does not contain this | |
field. | |
""" | |
super(WarmupDecaySchedule, self).__init__() | |
self._lr_schedule = lr_schedule | |
self._warmup_steps = warmup_steps | |
self._warmup_lr = warmup_lr | |
def __call__(self, step: int): | |
lr = self._lr_schedule(step) | |
if self._warmup_steps: | |
if self._warmup_lr is not None: | |
initial_learning_rate = tf.convert_to_tensor( | |
self._warmup_lr, name="initial_learning_rate") | |
else: | |
initial_learning_rate = tf.convert_to_tensor( | |
self._lr_schedule.initial_learning_rate, | |
name="initial_learning_rate") | |
dtype = initial_learning_rate.dtype | |
global_step_recomp = tf.cast(step, dtype) | |
warmup_steps = tf.cast(self._warmup_steps, dtype) | |
warmup_lr = initial_learning_rate * global_step_recomp / warmup_steps | |
lr = tf.cond(global_step_recomp < warmup_steps, lambda: warmup_lr, | |
lambda: lr) | |
return lr | |
def get_config(self) -> Mapping[str, Any]: | |
config = self._lr_schedule.get_config() | |
config.update({ | |
"warmup_steps": self._warmup_steps, | |
"warmup_lr": self._warmup_lr, | |
}) | |
return config | |
class CosineDecayWithWarmup(tf_keras.optimizers.schedules.LearningRateSchedule): | |
"""Class to generate learning rate tensor.""" | |
def __init__(self, batch_size: int, total_steps: int, warmup_steps: int): | |
"""Creates the cosine learning rate tensor with linear warmup. | |
Args: | |
batch_size: The training batch size used in the experiment. | |
total_steps: Total training steps. | |
warmup_steps: Steps for the warm up period. | |
""" | |
super(CosineDecayWithWarmup, self).__init__() | |
base_lr_batch_size = 256 | |
self._total_steps = total_steps | |
self._init_learning_rate = BASE_LEARNING_RATE * batch_size / base_lr_batch_size | |
self._warmup_steps = warmup_steps | |
def __call__(self, global_step: int): | |
global_step = tf.cast(global_step, dtype=tf.float32) | |
warmup_steps = self._warmup_steps | |
init_lr = self._init_learning_rate | |
total_steps = self._total_steps | |
linear_warmup = global_step / warmup_steps * init_lr | |
cosine_learning_rate = init_lr * (tf.cos(np.pi * | |
(global_step - warmup_steps) / | |
(total_steps - warmup_steps)) + | |
1.0) / 2.0 | |
learning_rate = tf.where(global_step < warmup_steps, linear_warmup, | |
cosine_learning_rate) | |
return learning_rate | |
def get_config(self): | |
return { | |
"total_steps": self._total_steps, | |
"warmup_learning_rate": self._warmup_learning_rate, | |
"warmup_steps": self._warmup_steps, | |
"init_learning_rate": self._init_learning_rate, | |
} | |